Random planar curves and Schramm-Loewner evolutions

We review some of the results that have been derived in the last years on conformal invariance, scaling limits and properties of some two-dimensional random curves. In particular, we describe the intuitive ideas that lead to the definition of the Schramm-Loewner evolutions SLE, we define these objects, study its various properties, show how to compute (probabilities, critical exponents) using SLE, relate SLE to planar Brownian motions (i.e. the determination of the critical exponents), planar self-avoiding walks, critical percolation, loop-erased random walks and uniform spanning trees.

[1]  Wendelin Werner,et al.  Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .

[2]  David Bruce Wilson,et al.  Generating random spanning trees more quickly than the cover time , 1996, STOC '96.

[3]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[4]  R. Pearson Conjecture for the extended Potts model magnetic eigenvalue , 1980 .

[5]  Gregory F. Lawler,et al.  The Intersection Exponent for Simple Random Walk , 2000, Combinatorics, Probability and Computing.

[6]  J. Cardy Lectures on Conformal Invariance and Percolation , 2001 .

[7]  Denis Bernard,et al.  SLE martingales and the Virasoro algebra , 2003 .

[8]  Oded Schramm A Percolation Formula , 2001 .

[10]  L. Ahlfors Conformal Invariants: Topics in Geometric Function Theory , 1973 .

[11]  A. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .

[12]  G. Lawler,et al.  Universality for conformally invariant intersection exponents , 2000 .

[13]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[14]  Itai Benjamini,et al.  Conformal Invariance of Voronoi Percolation , 1998 .

[15]  L. Ahlfors Complex Analysis , 1979 .

[16]  Sharp Estimates for Brownian Non-intersection Probabilities , 2001, math/0101247.

[17]  Wendelin Werner,et al.  Conformal fields, restriction properties, degenerate representations and SLE , 2002 .

[18]  P. Levy Processus stochastiques et mouvement brownien , 1948 .

[19]  Wendelin Werner,et al.  CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION , 2001 .

[20]  G. Lawler Strict concavity of the intersection exponent for Brownian motion in two and three dimensions. , 1998 .

[21]  Sergey Fomin,et al.  Loop-erased walks and total positivity , 2000, math/0004083.

[22]  L. Carleson,et al.  Aggregation in the Plane and Loewner's Equation , 2001 .

[23]  Saleur,et al.  Exact determination of the percolation hull exponent in two dimensions. , 1987, Physical review letters.

[24]  On conformally invariant subsets of the planar Brownian curve , 2001, math/0105192.

[25]  H. Kesten Scaling relations for 2D-percolation , 1987 .

[26]  Wendelin Werner,et al.  Conformal Restriction, Highest-Weight Representations and SLE , 2003 .

[27]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[28]  Bernard Sapoval,et al.  The fractal nature of a diffusion front and the relation to percolation , 1985 .

[29]  Robin Pemantle,et al.  The Dimension of the Brownian Frontier Is Greater Than 1 , 1995 .

[30]  Ruth J. Williams Brownian motion in a wedge with oblique reflection at the boundary , 1985 .

[31]  I. Benjamini,et al.  Noise sensitivity of Boolean functions and applications to percolation , 1998, math/9811157.

[32]  Almut Burchard,et al.  Holder Regularity and Dimension Bounds for Random Curves , 1998 .

[33]  Gregory F. Lawler Loop-Erased Random Walk , 1999 .

[34]  T. Kennedy Monte Carlo tests of stochastic Loewner evolution predictions for the 2D self-avoiding walk. , 2001, Physical review letters.

[35]  Alexander M. Polyakov,et al.  Infinite conformal symmetry of critical fluctuations in two dimensions , 1984 .

[36]  Olle Häggström,et al.  Random-cluster measures and uniform spanning trees , 1995 .

[37]  P. Francesco,et al.  Combinatorics of hard particles on planar graphs , 2002, cond-mat/0211168.

[38]  John Cardy LETTER TO THE EDITOR: The number of incipient spanning clusters in two-dimensional percolation , 1997 .

[39]  Yvan Saint-Aubin,et al.  Conformal invariance in two-dimensional percolation , 1994 .

[40]  The Brownian loop soup , 2003, math/0304419.

[41]  O. Schramm,et al.  The dimension of the planar Brownian frontier is 4/3 , 2000, math/0010165.

[42]  D. Welsh,et al.  Percolation probabilities on the square lattice , 1978 .

[43]  The lowest crossing in 2D critical percolation , 2002 .

[44]  N. Madras,et al.  THE SELF-AVOIDING WALK , 2006 .

[45]  M. Bauer,et al.  Conformal Field Theories of Stochastic Loewner Evolutions , 2002, hep-th/0210015.

[46]  Karl Löwner Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I , 1923 .

[47]  Duplantier Conformally invariant fractals and potential theory , 2000, Physical review letters.

[48]  Wendelin Werner,et al.  Values of Brownian intersection exponents III: Two-sided exponents , 2002 .

[49]  Harmonic Measure Exponents for Two-Dimensional Percolation , 1999, cond-mat/9901008.

[50]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[51]  Path Crossing Exponents and the External Perimeter in 2D Percolation , 1999, cond-mat/9901018.

[52]  J. Berg,et al.  A new lower bound for the critical probability of site percolation on the square lattice , 1996 .

[53]  Wendelin Werner,et al.  Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .

[54]  G. Lawler The Dimension of the Frontier of Planar Brownian Motion , 1996 .

[55]  Vincent Beffara Hausdorff dimensions for SLE6 , 2004 .

[56]  W. Werner Asymptotic behaviour of disconnection and non-intersection exponents , 1997 .

[57]  Bertrand Duplantier Conformal Fractal Geometry and Boundary Quantum Gravity , 2003 .

[58]  L. Russo A note on percolation , 1978 .

[59]  G. Lawler A self-avoiding random walk , 1980 .

[60]  J. Cardy,et al.  Conformal Invariance and Surface Critical Behavior , 1984 .

[61]  R. Pemantle Choosing a Spanning Tree for the Integer Lattice Uniformly , 1991, math/0404043.

[62]  L. Carleson,et al.  Laplacian path models , 2002 .

[63]  B. Duplantier RANDOM WALKS AND QUANTUM GRAVITY IN TWO DIMENSIONS , 1998 .

[64]  M. den Nijs,et al.  A relation between the temperature exponents of the eight-vertex and q-state Potts model , 1979 .

[65]  G. Lawler,et al.  The disconnection exponent for simple random walk , 1997 .

[66]  H. Kesten Percolation theory for mathematicians , 1982 .

[67]  G. Lawler Intersections of random walks , 1991 .

[68]  Oded Schramm,et al.  Basic properties of SLE , 2001 .

[69]  Oded Schramm,et al.  Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.

[70]  Bounds for Disconnection Exponents , 1996 .

[71]  Gilles Schaeffer,et al.  The degree distribution in bipartite planar maps: applications to the Ising model , 2002 .

[72]  Scaling limits for minimal and random spanning trees in two dimensions , 1998, math/9809145.

[73]  Critical Exponents, Conformal Invariance and Planar Brownian Motion , 2000, math/0007042.

[74]  John Cardy Critical percolation in finite geometries , 1992 .

[75]  SLE and Triangles , 2002, math/0212008.

[76]  G. Lawler Nonintersecting planar Brownian motions. , 1995 .

[77]  B. Duplantier Loop-erased self-avoiding walks in two dimensions: exact critical exponents and winding numbers , 1992 .

[78]  G. Lawler Hausdorff Dimension of Cut Points for Brownian Motion , 1996 .

[79]  Russell Lyons,et al.  A bird's-eye view of uniform spanning trees and forests , 1997, Microsurveys in Discrete Probability.

[80]  W. Werner Sur la forme des composantes connexes du complémentaire de la courbe brownienne plane , 1994 .

[81]  Wendelin Werner,et al.  One-Arm Exponent for Critical 2D Percolation , 2001 .

[82]  Richard Kenyon,et al.  The asymptotic determinant of the discrete Laplacian , 2000, math-ph/0011042.

[83]  R. Kenyon Local statistics of lattice dimers , 2001, math/0105054.

[84]  Amnon Aharony,et al.  Accessible external perimeters of percolation clusters , 1987 .

[85]  O. Schramm,et al.  On the scaling limit of planar self-avoiding walk , 2002, math/0204277.

[86]  Richard Kenyon,et al.  Conformal invariance of domino tiling , 1999 .

[87]  Russell Lyons,et al.  Uniform spanning forests , 2001 .

[88]  C. Pommerenke Boundary Behaviour of Conformal Maps , 1992 .

[89]  V. Kaimanovich An introduction to the Stochastic Loewner Evolution , 2004 .

[90]  D. Bernard,et al.  SLEκ growth processes and conformal field theories , 2002 .

[91]  G. Lawler,et al.  Intersection Exponents for Planar Brownian Motion , 1999 .

[92]  W. Rudin Real and complex analysis , 1968 .

[93]  S. Smirnov Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .