Random planar curves and Schramm-Loewner evolutions
暂无分享,去创建一个
[1] Wendelin Werner,et al. Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .
[2] David Bruce Wilson,et al. Generating random spanning trees more quickly than the cover time , 1996, STOC '96.
[3] R. A. Silverman,et al. Special functions and their applications , 1966 .
[4] R. Pearson. Conjecture for the extended Potts model magnetic eigenvalue , 1980 .
[5] Gregory F. Lawler,et al. The Intersection Exponent for Simple Random Walk , 2000, Combinatorics, Probability and Computing.
[6] J. Cardy. Lectures on Conformal Invariance and Percolation , 2001 .
[7] Denis Bernard,et al. SLE martingales and the Virasoro algebra , 2003 .
[8] Oded Schramm. A Percolation Formula , 2001 .
[10] L. Ahlfors. Conformal Invariants: Topics in Geometric Function Theory , 1973 .
[11] A. Polyakov,et al. Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .
[12] G. Lawler,et al. Universality for conformally invariant intersection exponents , 2000 .
[13] J. Cardy. Scaling and Renormalization in Statistical Physics , 1996 .
[14] Itai Benjamini,et al. Conformal Invariance of Voronoi Percolation , 1998 .
[15] L. Ahlfors. Complex Analysis , 1979 .
[16] Sharp Estimates for Brownian Non-intersection Probabilities , 2001, math/0101247.
[17] Wendelin Werner,et al. Conformal fields, restriction properties, degenerate representations and SLE , 2002 .
[18] P. Levy. Processus stochastiques et mouvement brownien , 1948 .
[19] Wendelin Werner,et al. CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION , 2001 .
[20] G. Lawler. Strict concavity of the intersection exponent for Brownian motion in two and three dimensions. , 1998 .
[21] Sergey Fomin,et al. Loop-erased walks and total positivity , 2000, math/0004083.
[22] L. Carleson,et al. Aggregation in the Plane and Loewner's Equation , 2001 .
[23] Saleur,et al. Exact determination of the percolation hull exponent in two dimensions. , 1987, Physical review letters.
[24] On conformally invariant subsets of the planar Brownian curve , 2001, math/0105192.
[25] H. Kesten. Scaling relations for 2D-percolation , 1987 .
[26] Wendelin Werner,et al. Conformal Restriction, Highest-Weight Representations and SLE , 2003 .
[27] B. Mandelbrot. Fractal Geometry of Nature , 1984 .
[28] Bernard Sapoval,et al. The fractal nature of a diffusion front and the relation to percolation , 1985 .
[29] Robin Pemantle,et al. The Dimension of the Brownian Frontier Is Greater Than 1 , 1995 .
[30] Ruth J. Williams. Brownian motion in a wedge with oblique reflection at the boundary , 1985 .
[31] I. Benjamini,et al. Noise sensitivity of Boolean functions and applications to percolation , 1998, math/9811157.
[32] Almut Burchard,et al. Holder Regularity and Dimension Bounds for Random Curves , 1998 .
[33] Gregory F. Lawler. Loop-Erased Random Walk , 1999 .
[34] T. Kennedy. Monte Carlo tests of stochastic Loewner evolution predictions for the 2D self-avoiding walk. , 2001, Physical review letters.
[35] Alexander M. Polyakov,et al. Infinite conformal symmetry of critical fluctuations in two dimensions , 1984 .
[36] Olle Häggström,et al. Random-cluster measures and uniform spanning trees , 1995 .
[37] P. Francesco,et al. Combinatorics of hard particles on planar graphs , 2002, cond-mat/0211168.
[38] John Cardy. LETTER TO THE EDITOR: The number of incipient spanning clusters in two-dimensional percolation , 1997 .
[39] Yvan Saint-Aubin,et al. Conformal invariance in two-dimensional percolation , 1994 .
[40] The Brownian loop soup , 2003, math/0304419.
[41] O. Schramm,et al. The dimension of the planar Brownian frontier is 4/3 , 2000, math/0010165.
[42] D. Welsh,et al. Percolation probabilities on the square lattice , 1978 .
[43] The lowest crossing in 2D critical percolation , 2002 .
[44] N. Madras,et al. THE SELF-AVOIDING WALK , 2006 .
[45] M. Bauer,et al. Conformal Field Theories of Stochastic Loewner Evolutions , 2002, hep-th/0210015.
[46] Karl Löwner. Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I , 1923 .
[47] Duplantier. Conformally invariant fractals and potential theory , 2000, Physical review letters.
[48] Wendelin Werner,et al. Values of Brownian intersection exponents III: Two-sided exponents , 2002 .
[49] Harmonic Measure Exponents for Two-Dimensional Percolation , 1999, cond-mat/9901008.
[50] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[51] Path Crossing Exponents and the External Perimeter in 2D Percolation , 1999, cond-mat/9901018.
[52] J. Berg,et al. A new lower bound for the critical probability of site percolation on the square lattice , 1996 .
[53] Wendelin Werner,et al. Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .
[54] G. Lawler. The Dimension of the Frontier of Planar Brownian Motion , 1996 .
[55] Vincent Beffara. Hausdorff dimensions for SLE6 , 2004 .
[56] W. Werner. Asymptotic behaviour of disconnection and non-intersection exponents , 1997 .
[57] Bertrand Duplantier. Conformal Fractal Geometry and Boundary Quantum Gravity , 2003 .
[58] L. Russo. A note on percolation , 1978 .
[59] G. Lawler. A self-avoiding random walk , 1980 .
[60] J. Cardy,et al. Conformal Invariance and Surface Critical Behavior , 1984 .
[61] R. Pemantle. Choosing a Spanning Tree for the Integer Lattice Uniformly , 1991, math/0404043.
[62] L. Carleson,et al. Laplacian path models , 2002 .
[63] B. Duplantier. RANDOM WALKS AND QUANTUM GRAVITY IN TWO DIMENSIONS , 1998 .
[64] M. den Nijs,et al. A relation between the temperature exponents of the eight-vertex and q-state Potts model , 1979 .
[65] G. Lawler,et al. The disconnection exponent for simple random walk , 1997 .
[66] H. Kesten. Percolation theory for mathematicians , 1982 .
[67] G. Lawler. Intersections of random walks , 1991 .
[68] Oded Schramm,et al. Basic properties of SLE , 2001 .
[69] Oded Schramm,et al. Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.
[70] Bounds for Disconnection Exponents , 1996 .
[71] Gilles Schaeffer,et al. The degree distribution in bipartite planar maps: applications to the Ising model , 2002 .
[72] Scaling limits for minimal and random spanning trees in two dimensions , 1998, math/9809145.
[73] Critical Exponents, Conformal Invariance and Planar Brownian Motion , 2000, math/0007042.
[74] John Cardy. Critical percolation in finite geometries , 1992 .
[75] SLE and Triangles , 2002, math/0212008.
[76] G. Lawler. Nonintersecting planar Brownian motions. , 1995 .
[77] B. Duplantier. Loop-erased self-avoiding walks in two dimensions: exact critical exponents and winding numbers , 1992 .
[78] G. Lawler. Hausdorff Dimension of Cut Points for Brownian Motion , 1996 .
[79] Russell Lyons,et al. A bird's-eye view of uniform spanning trees and forests , 1997, Microsurveys in Discrete Probability.
[80] W. Werner. Sur la forme des composantes connexes du complémentaire de la courbe brownienne plane , 1994 .
[81] Wendelin Werner,et al. One-Arm Exponent for Critical 2D Percolation , 2001 .
[82] Richard Kenyon,et al. The asymptotic determinant of the discrete Laplacian , 2000, math-ph/0011042.
[83] R. Kenyon. Local statistics of lattice dimers , 2001, math/0105054.
[84] Amnon Aharony,et al. Accessible external perimeters of percolation clusters , 1987 .
[85] O. Schramm,et al. On the scaling limit of planar self-avoiding walk , 2002, math/0204277.
[86] Richard Kenyon,et al. Conformal invariance of domino tiling , 1999 .
[87] Russell Lyons,et al. Uniform spanning forests , 2001 .
[88] C. Pommerenke. Boundary Behaviour of Conformal Maps , 1992 .
[89] V. Kaimanovich. An introduction to the Stochastic Loewner Evolution , 2004 .
[90] D. Bernard,et al. SLEκ growth processes and conformal field theories , 2002 .
[91] G. Lawler,et al. Intersection Exponents for Planar Brownian Motion , 1999 .
[92] W. Rudin. Real and complex analysis , 1968 .
[93] S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .