Geometrical Structure of Laplacian Eigenfunctions

We summarize the properties of eigenvalues and eigenfunctions of the Laplace operator in bounded Euclidean domains with Dirichlet, Neumann or Robin boundary condition. We keep the presentation at a level accessible to scientists from various disciplines ranging from mathematics to physics and computer sciences. The main focus is put onto multiple intricate relations between the shape of a domain and the geometrical structure of eigenfunctions.

[1]  S. John,et al.  The Localization of Light , 1991 .

[2]  Tadashi Shima On eigenvalue problems for the random walks on the Sierpinski pre-gaskets , 1991 .

[3]  V. Amar,et al.  Schrödinger equation for convex plane polygons. II. A no‐go theorem for plane waves representation of solutions , 1993 .

[4]  Jacob Rubinstein,et al.  Variational Problems¶on Multiply Connected Thin Strips I:¶Basic Estimates and Convergence¶of the Laplacian Spectrum , 2001 .

[5]  Anna Blasiak,et al.  SPECTRA OF SELF-SIMILAR LAPLACIANS ON THE SIERPINSKI GASKET WITH TWISTS , 2008 .

[6]  R. Bass Diffusions and Elliptic Operators , 1997 .

[7]  Barry Simon,et al.  Fifty years of eigenvalue perturbation theory , 1991 .

[8]  Vincent Heuveline,et al.  On the computation of a very large number of eigenvalues for selfadjoint elliptic operators by means of multigrid methods , 2003 .

[9]  David L. Webb,et al.  One cannot hear the shape of a drum , 1992, math/9207215.

[10]  R. Bass Probabilistic Techniques in Analysis , 1994 .

[11]  Karen K. Uhlenbeck Generic Properties of Eigenfunctions , 1976 .

[12]  Daniel Daners,et al.  A Faber-Krahn inequality for Robin problems in any space dimension , 2006 .

[13]  Shuichi Jimbo,et al.  Spectra of domains with partial degeneration , 2009 .

[14]  Krzysztof Burdzy The hot spots problem in planar domains with one hole , 2004 .

[15]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[16]  Michael J. Ward,et al.  Strong Localized Perturbations of Eigenvalue Problems , 1993, SIAM J. Appl. Math..

[17]  Arke Pleijel,et al.  Remarks on courant's nodal line theorem , 1956 .

[18]  Ben Andrews,et al.  Proof of the fundamental gap conjecture , 2010, 1006.1686.

[19]  Klaus M. Frahm,et al.  Quantum Localization in Rough Billiards , 1997 .

[20]  Dmitry Jakobson,et al.  Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond , 2004 .

[21]  John P. Carini,et al.  Binding and Scattering in Two-Dimensional Systems: Applications to Quantum Wires, Waveguides and Photonic Crystals , 1999 .

[22]  Andrew Hassell,et al.  Eigenfunction Concentration for Polygonal Billiards , 2008 .

[23]  A Richter,et al.  First experimental observation of superscars in a pseudointegrable barrier billiard. , 2006, Physical review letters.

[24]  Michel L. Lapidus,et al.  Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture , 1991 .

[25]  Richard B. Melrose,et al.  Weyl''s conjecture for manifolds with concave boundary , 1980 .

[26]  Pedro David Garcia,et al.  Cavity Quantum Electrodynamics with Anderson-Localized Modes , 2010, Science.

[27]  C. Boldrighini,et al.  Billiards in Polygons , 1978 .

[28]  Pandey,et al.  Signatures of chaos in quantum billiards: Microwave experiments. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[30]  Peter Greiner,et al.  Partial differential equations and their applications , 1997 .

[31]  Schwartz,et al.  Diffusion propagator as a probe of the structure of porous media. , 1992, Physical review letters.

[32]  Roberto Righini,et al.  Localization of light in a disordered medium , 1997, Nature.

[33]  S. Sridhar,et al.  Experimental observation of scarred eigenfunctions of chaotic microwave cavities. , 1991, Physical review letters.

[34]  F. W. J. Olver,et al.  A further method for the evaluation of zeros of Bessel functions and some new asymptotic expansions for zeros of functions of large order , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  Robert S. Strichartz,et al.  Localized Eigenfunctions: Here You See Them, There You Don't , 2009, 0909.0783.

[36]  Jens Marklof,et al.  Almost all eigenfunctions of a rational polygon are uniformly distributed , 2011, 1111.3583.

[37]  Qatu,et al.  Shape Optimization by the Homogenization Method. Applied Mathematical Sciences, Vol 146 , 2003 .

[38]  P. Bérard,et al.  Transplantation et isospectralité. I , 1992 .

[39]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[40]  S. Nazarov,et al.  On eigenfunctions localized in a neighborhood of the lateral surface of a thin domain , 2000 .

[41]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[42]  Karl G. Helmer,et al.  Determination of ratio of surface area to pore volume from restricted diffusion in a constant field gradient , 1995 .

[43]  R. Benguria,et al.  Universal bounds for the low eigenvalues of Neumann Laplacians in N dimensions , 1993 .

[44]  Michel L. Lapidus,et al.  The Riemann Zeta-Function and the One-Dimensional Weyl-Berry Conjecture for Fractal Drums , 1993 .

[45]  Richard F. Bass,et al.  Brownian Motion and Harmonic Analysis on Sierpinski Carpets , 1999, Canadian Journal of Mathematics.

[46]  George Polya,et al.  Induction and Analogy in Mathematics , 1954 .

[47]  Z. Rudnick Quantum Chaos? , 2007 .

[48]  N. Nadirashvili,et al.  Bounds on the Multiplicity of Eigenvalues for Fixed Membranes , 1998 .

[49]  S. Zelditch,et al.  Ergodicity of eigenfunctions for ergodic billiards , 1996 .

[50]  Y. Avishai,et al.  Quantum bound states in open geometries. , 1991, Physical review. B, Condensed matter.

[51]  Giulio Casati,et al.  Relevance of classical chaos in quantum mechanics: The hydrogen atom in a monochromatic field , 1987 .

[52]  José M. Arrieta,et al.  Dynamics in dumbbell domains I. Continuity of the set of equilibria , 2006 .

[53]  R. Gadyl'shin,et al.  Characteristic frequencies of bodies with thin spikes. I. Convergence and estimates , 1993 .

[54]  Pedro Freitas,et al.  A sharp upper bound for the first Dirichlet eigenvalue and the growth of the isoperimetric constant of convex domains , 2007, 0710.5475.

[55]  George Polya,et al.  On the characteristic frequencies of a symmetric membrane , 1955 .

[56]  Peter March,et al.  A Fleming–Viot Particle Representation¶of the Dirichlet Laplacian , 2000 .

[57]  Denis S. Grebenkov,et al.  NMR survey of reflected brownian motion , 2007 .

[58]  A. Kudrolli,et al.  Experimental studies of chaos and localization in quantum wave functions. , 1995, Physical review letters.

[59]  J. Kuttler,et al.  EIGENVALUES OF THE LAPLACIAN ON REGULAR POLYGONS AND POLYGONS RESULTING FROM THEIR DISECTION , 1999 .

[60]  A. Mirlin,et al.  Symmetries of multifractal spectra and field theories of Anderson localization. , 2011, Physical review letters.

[61]  Leonid Friedlander,et al.  On the Spectrum of the Dirichlet Laplacian in a Narrow Infinite Strip , 2008 .

[62]  Steve Zelditch,et al.  Inverse Spectral Problem for Analytic Domains I: Balian-Bloch Trace Formula , 2001, math/0111077.

[63]  Kaufman,et al.  Wave chaos in the stadium: Statistical properties of short-wave solutions of the Helmholtz equation. , 1988, Physical review. A, General physics.

[64]  M. Zworski,et al.  Eigenfunctions for partially rectangular billiards , 2003 .

[65]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[66]  A. Mirlin,et al.  Statistics of energy levels and eigenfunctions in disordered systems , 2000 .

[67]  R. Benguria,et al.  Proof of the Payne-Pólya-Weinberger conjecture , 1991 .

[68]  Shuichi Jimbo,et al.  Perturbation formula of eigenvalues in a singularly perturbed domain , 1993 .

[69]  Lauber,et al.  Geometric phases and hidden symmetries in simple resonators. , 1994, Physical review letters.

[70]  S. Zelditch EIGENFUNCTIONS AND NODAL SETS , 2012, 1205.2812.

[71]  Michel L. Lapidus,et al.  Localization on Snowflake Domains , 2006 .

[72]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[73]  Pavel Exner,et al.  Lower bounds to bound state energies in bent tubes , 1990 .

[74]  John William Strutt,et al.  Scientific Papers: The Problem of the Whispering Gallery , 2009 .

[75]  Dorin Bucur,et al.  An alternative approach to the Faber–Krahn inequality for Robin problems , 2009 .

[76]  Tosio Kato Perturbation theory for linear operators , 1966 .

[77]  R. Feynman,et al.  Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .

[78]  Y. C. Verdière,et al.  Ergodicité et fonctions propres du laplacien , 1985 .

[79]  S. Zelditch,et al.  INVERSE SPECTRAL PROBLEM FOR ANALYTIC DOMAINS II: Z2- SYMMETRIC DOMAINS , 2001 .

[80]  Fadil Santosa,et al.  Optimal Localization of Eigenfunctions in an Inhomogeneous Medium , 2004, SIAM J. Appl. Math..

[81]  W. K. Hayman,et al.  Some bounds for principal frequency , 1978 .

[82]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[83]  Alex H. Barnett Asymptotic rate of quantum ergodicity in chaotic euclidean billiards , 2005 .

[84]  P. D. Hislop,et al.  Eigenvalues and Resonances for Domains with Tubes: Neumann Boundary Conditions , 1995 .

[85]  Shing-Tung Yau,et al.  SURVEY ON PARTIAL DIFFERENTIAL EQUATIONS IN 3 DIFFERENTIAL GEOMETRY , 1982 .

[86]  Peter Kuchment,et al.  Asymptotics of spectra of Neumann Lapla-cians in thin domains , 2003 .

[87]  Jianxin Zhou,et al.  Visualization of Special Eigenmode Shapes of a Vibrating Elliptical Membrane , 1994, SIAM Rev..

[88]  J. V. Ralston,et al.  Approximate eigenfunctions of the Laplacian , 1977 .

[89]  Patrick Joly,et al.  Mathematical Analysis of Guided Water Waves , 1993, SIAM J. Appl. Math..

[90]  Richard F. Bass,et al.  The construction of brownian motion on the Sierpinski carpet , 1989 .

[91]  Arnd Bäcker,et al.  Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems , 2002 .

[92]  Kudrolli,et al.  Experiments on not "hearing the shape" of drums. , 1994, Physical review letters.

[93]  Geneviève Raugel,et al.  Dynamics of partial differential equations on thin domains , 1995 .

[94]  Michael M. H. Pang,et al.  Approximation of Ground State Eigenvalues and Eigenfunctions of Dirichlet Laplacians , 1997 .

[95]  Mark A. Pinsky,et al.  Completeness of the Eigenfunctions of the Equilateral Triangle , 1985 .

[96]  Changyu Xia A Universal Bound for the Low Eigenvalues of Neumann Laplacians on Compact Domains in a Hadamard Manifold , 1999 .

[97]  J. Descloux,et al.  An accurate algorithm for computing the eigenvalues of a polygonal membrane , 1983 .

[98]  Howard A. Levine,et al.  Inequalities between dirichlet and Neumann eigenvalues , 1986 .

[99]  Jun Kigami,et al.  Harmonic calculus on p.c.f. self-similar sets , 1993 .

[100]  Iosif Polterovich,et al.  Maximization of the second positive Neumann eigenvalue for planar domains , 2008, 0801.2142.

[101]  M. Berg,et al.  On the Minimization of Dirichlet Eigenvalues of the Laplace Operator , 2009, 0905.4812.

[102]  R. Aurich,et al.  Exact theory for the quantum eigenstates of a strongly chaotic system , 1991 .

[103]  L. Payne Isoperimetric Inequalities and Their Applications , 1967 .

[104]  M. Berry,et al.  Quantum scars of classical closed orbits in phase space , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[105]  C. Bandle Isoperimetric inequalities and applications , 1980 .

[106]  Pavel Exner,et al.  Hilbert Space Operators in Quantum Physics , 1994 .

[107]  Kazuaki Sakoda,et al.  Localization of electromagnetic waves in three-dimensional fractal cavities. , 2004, Physical review letters.

[108]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[109]  David L. Webb,et al.  Isospectral Convex Domains in Euclidean Space , 1994 .

[110]  C. B. Moler,et al.  Bounds for Eigenvalues and Eigenvectors of Symmetric Operators , 1968 .

[111]  Terence Tao,et al.  Upper and lower bounds for normal derivatives of Dirichlet eigenfunctions , 2002 .

[112]  Schult,et al.  Quantum bound states in a classically unbound system of crossed wires. , 1989, Physical review. B, Condensed matter.

[113]  A. Aspect,et al.  Direct observation of Anderson localization of matter waves in a controlled disorder , 2008, Nature.

[114]  V. Maz'ya,et al.  Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains: Volume I , 2000 .

[115]  Yu. Netrusov,et al.  Weyl Asymptotic Formula for the Laplacian on Domains with Rough Boundaries , 2003 .

[116]  Sylvie Desjardins,et al.  Heat content asymptotics for higher order Laplacians , 1998 .

[117]  Jochen Brüning,et al.  Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators , 1978 .

[118]  L. Bunimovich On the ergodic properties of nowhere dispersing billiards , 1979 .

[119]  Barry Simon,et al.  The essential spectrum of Neumann Laplacians on some bounded singular domains , 1991 .

[120]  Mark A. Pinsky,et al.  The Eigenvalues of an Equilateral Triangle , 1980 .

[121]  F. Ursell,et al.  Trapped modes in a circular cylindrical acoustic waveguide , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[122]  M. van den Berg,et al.  Heat flow out of regions in ℝm , 1989 .

[123]  Klaus Schulten,et al.  Expansion method for stationary states of quantum billiards , 1999 .

[124]  Isaac Fried,et al.  Superaccurate finite element eigenvalue computation , 2004 .

[125]  Pawel Kröger,et al.  On the ground state eigenfunction of a convex domain in Euclidean space , 1996 .

[126]  Zhenyuan Xu,et al.  Inequalities for Sums of Reciprocals of Eigenvalues , 1993 .

[127]  Jacob Rubinstein,et al.  Elliptic problems on networks with constrictions , 2006 .

[128]  J. T. Londergan,et al.  Bound states in waveguides and bent quantum wires. I. Applications to waveguide systems , 1997 .

[129]  T. R. Kirkpatrick,et al.  The Anderson-Mott transition , 1994 .

[130]  Fernando Reitich,et al.  Boundary-variation solution of eigenvalue problems for elliptic operators , 2001 .

[131]  Peter B. Gilkey,et al.  Asymptotic Formulae in Spectral Geometry , 2003 .

[132]  N. Filonov,et al.  On an inequality between Dirichlet and Neumann eigenvalues for the Laplace operator , 2005 .

[133]  Bernard Sapoval,et al.  Acoustical properties of irregular and fractal cavities , 1997 .

[134]  M. Brelot Classical potential theory and its probabilistic counterpart , 1986 .

[135]  J. Schwartz,et al.  Spectral theory : self adjoint operators in Hilbert space , 1963 .

[136]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[137]  Giuseppe Chiti,et al.  A reverse Hölder inequality for the eigenfunctions of linear second order elliptic operators , 1982 .

[138]  J. Thomas Beale,et al.  Scattering frequencies of resonators , 1973 .

[139]  B. Cipra You Can't Hear the Shape of a Drum. , 1992, Science.

[140]  Abdessatar Khelifi On Spectral Properties Of The Laplace Operator Via Boundary Perturbation , 2007 .

[141]  W. Hansen,et al.  Isoperimetric inequalities in potential theory , 1994 .

[142]  P Kröger,et al.  Upper bounds for the Neumann eigenvalues on a bounded domain in euclidean space , 1992 .

[143]  J. Westwater,et al.  The Mathematics of Diffusion. , 1957 .

[144]  S. Bittner,et al.  Double-slit experiments with microwave billiards. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[145]  B. Kramer,et al.  Localization: theory and experiment , 1993 .

[146]  G. Pólya,et al.  Remarks on the Foregoing Paper , 1952 .

[147]  S. Mayboroda,et al.  Universal mechanism for Anderson and weak localization , 2012, Proceedings of the National Academy of Sciences.

[148]  Pavel Exner,et al.  Multiple bound states in scissor-shaped waveguides , 2002 .

[149]  Bernhard Kawohl,et al.  Rearrangements and Convexity of Level Sets in PDE , 1985 .

[150]  Fedor Nazarov,et al.  On the number of nodal domains of random spherical harmonics , 2007, 0706.2409.

[151]  S. Ozawa,et al.  Singular variation of domains and eigenvalues of the Laplacian , 1981 .

[152]  O Olendski,et al.  Theory of a curved planar waveguide with Robin boundary conditions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[153]  M F Crommie,et al.  Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.

[154]  Vladimir F. Lazutkin,et al.  Kam Theory and Semiclassical Approximations to Eigenfunctions , 1993 .

[155]  Leonid Polterovich,et al.  Sign and area in nodal geometry of Laplace eigenfunctions , 2004 .

[156]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[157]  Leonid A. Bunimovich,et al.  Mushrooms and other billiards with divided phase space. , 2001, Chaos.

[158]  Pier Domenico Lamberti,et al.  Spectral stability of general non-negative self-adjoint operators with applications to Neumann-type operators , 2007 .

[159]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[160]  E. Krahn,et al.  Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .

[161]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[162]  J. Powell Mathematical Methods in Physics , 1965 .

[163]  Tobin A. Driscoll,et al.  Eigenmodes of Isospectral Drums , 1997, SIAM Rev..

[164]  Patrick A. Lee,et al.  Disordered Electronic Systems , 1985, The Quantum Nature of Materials.

[165]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[166]  Brian J. McCartin,et al.  Eigenstructure of the equilateral triangle , 2003 .

[167]  F. Ursell,et al.  Mathematical aspects of trapping modes in the theory of surface waves , 1987, Journal of Fluid Mechanics.

[168]  Eric Leichtnam,et al.  Ergodic properties of eigenfunctions for the Dirichlet problem , 1993 .

[169]  Robert Holyst,et al.  Configurational transition in a Fleming - Viot-type model and probabilistic interpretation of Laplacian eigenfunctions , 1996 .

[170]  C. C. Liu,et al.  Wave functions with localizations on classical periodic orbits in weakly perturbed quantum billiards. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[171]  M. Protter Can one hear the shape of a drum? revisited , 1987 .

[172]  José M. Arrieta,et al.  Dynamics in dumbbell domains III. Continuity of attractors , 2009 .

[173]  Brian J. McCartin,et al.  Eigenstructure of the equilateral triangle. Part III. The Robin problem , 2004, Int. J. Math. Math. Sci..

[174]  Bernard Sapoval,et al.  Localizations in Fractal Drums: An Experimental Study , 1999 .

[175]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[176]  Claudio Perez Tamargo Can one hear the shape of a drum , 2008 .

[177]  Klaus-Dieter Semmler,et al.  Some planar isospectral domains , 2010, 1005.1839.

[178]  V. G. Sigillito,et al.  Eigenvalues of the Laplacian in Two Dimensions , 1984 .

[179]  Bruno Eckhardt,et al.  Quantum mechanics of classically non-integrable systems , 1988 .

[180]  L. Rosenhead Conduction of Heat in Solids , 1947, Nature.

[181]  Biswas,et al.  Quantum description of a pseudointegrable system: The pi /3-rhombus billiard. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[182]  Denis S. Grebenkov,et al.  A Spectral Approach to Survival Probabilities in Porous Media , 2010 .

[183]  A. Dhia,et al.  MATHEMATICAL ANALYSIS OF ELASTIC SURFACE WAVES IN TOPOGRAPHIC WAVEGUIDES , 1999 .

[184]  Karl G. Helmer,et al.  Restricted Diffusion in Sedimentary Rocks. Determination of Surface-Area-to-Volume Ratio and Surface Relaxivity , 1994 .

[185]  Pabitra N. Sen,et al.  Time-dependent diffusion coefficient as a probe of geometry , 2004 .

[186]  Tyrus Berry,et al.  Outer Approximation of the Spectrum of a Fractal Laplacian , 2009, Exp. Math..

[187]  Peter Kuchment,et al.  Critical Partitions and Nodal Deficiency of Billiard Eigenfunctions , 2011, 1107.3489.

[188]  R. Schubertz,et al.  On the Number of Bouncing Ball Modes in Billiards , 1997 .

[189]  Mark S. Ashbaugh,et al.  Spectral Theory and Geometry: Isoperimetric and universal inequalities for eigenvalues , 1999 .

[190]  Partha P. Mitra,et al.  Time-Dependent Diffusion Coefficient of Fluids in Porous Media as a Probe of Surface-to-Volume Ratio , 1993 .

[191]  C. Raman,et al.  Whispering-Gallery Phenomena at St. Paul's Cathedral , 1921, Nature.

[192]  Marcel Filoche,et al.  The Hidden Landscape of Localization , 2011 .

[193]  Wendelin Werner,et al.  A counterexample to the “hot spots” conjecture , 1998 .

[194]  René Carmona,et al.  Can one hear the dimension of a fractal? , 1986 .

[195]  C. Moler,et al.  APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS , 1967 .

[196]  Árpád Elbert,et al.  Some recent results on the zeros of Bessel functions and orthogonal polynomials , 2001 .

[197]  J. Doob Classical potential theory and its probabilistic counterpart , 1984 .

[198]  Brian Sleeman The inverse acoustic obstacle scattering problem and its interior dual , 2009 .

[199]  Nikolai Nadirashvili,et al.  Metric properties of eigenfunctions of the Laplace operator on manifolds , 1991 .

[200]  Giulio Casati,et al.  Quantum chaos : between order and disorder , 1995 .

[201]  S. Skipetrov,et al.  Localization of ultrasound in a three-dimensional elastic network , 2008, 0805.1502.

[202]  Marko Robnik,et al.  Survey of the eigenfunctions of a billiard system between integrability and chaos , 1993 .

[203]  Brian J. McCartin Eigenstructure of the equilateral triangle, Part II: The Neumann problem , 2002 .

[204]  Toshikazu Sunada,et al.  Riemannian coverings and isospectral manifolds , 1985 .

[205]  D. Grebenkov,et al.  Laplacian Eigenfunctions in NMR , 2008 .

[206]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[207]  Alex H. Barnett,et al.  Perturbative Analysis of the Method of Particular Solutions for Improved Inclusion of High-Lying Dirichlet Eigenvalues , 2009, SIAM J. Numer. Anal..

[208]  Tomi Ohtsuki,et al.  Anderson transition in two-dimensional systems with spin-orbit coupling. , 2002, Physical review letters.

[209]  Leonid A. Bunimovich,et al.  On ergodic properties of certain billiards , 1974 .

[210]  Vladimir I. Arnold,et al.  Modes and quasimodes , 1972 .

[211]  Robert S. Strichartz,et al.  Differential Equations on Fractals: A Tutorial , 2006 .

[212]  R. G. Casten,et al.  Instability results for reaction diffusion equations with Neumann boundary conditions , 1978 .

[213]  Lawrence E. Payne,et al.  Some isoperimetric norm bounds for solutions of the helmholtz equation , 1973 .

[214]  P. Sheng,et al.  Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Second edition , 1995 .

[215]  M. M. H. Pang,et al.  Approximation of Ground State Eigenfunction on the Snowflake Region , 1996 .

[216]  A. Ludwig,et al.  Multifractality and conformal invariance at 2D metal-insulator transition in the spin-orbit symmetry class. , 2007, Physical review letters.

[217]  Ju B Oročko On the Application of Spectral Theory to Obtain Estimates of Solutions of the SCHRÖDINGER Equation , 1974 .

[218]  Y. C. Verdière,et al.  Construction de laplaciens dont une partie finie du spectre est donnée , 1987 .

[219]  Franz Rellich,et al.  Perturbation Theory of Eigenvalue Problems , 1969 .

[220]  Ronen Basri,et al.  Shape representation and classification using the Poisson equation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[221]  Bernard Sapoval,et al.  Enhanced wave absorption through irregular interfaces , 2009 .

[222]  M. J. Lighthill,et al.  The eigenvalues of ∇2u + λu=0 when the boundary conditions are given on semi-infinite domains , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.

[223]  S. J. Chapman,et al.  Drums That Sound the Same , 1995 .

[224]  Isabel N. Figueiredo,et al.  On the attainable eigenvalues of the Laplace operator , 1999 .

[225]  Bernard Sapoval,et al.  Experimental study of a fractal acoustical cavity , 1999 .

[226]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[227]  C. V. Raman,et al.  On the whispering-gallery phenomenon , 1922 .

[228]  Robert Osserman,et al.  A note on Hayman's theorem on the bass note of a drum , 1977 .

[229]  M. Maggioni,et al.  Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels , 2008, Proceedings of the National Academy of Sciences.

[230]  Andrew Hassell,et al.  Ergodic billiards that are not quantum unique ergodic , 2008, 0807.0666.

[231]  V. Ya. Ivrii,et al.  Second term of the spectral asymptotic expansion of the Laplace - Beltrami operator on manifolds with boundary , 1980 .

[232]  Melrose,et al.  Geometric Scattering Theory , 1995 .

[233]  J. Stoyanov A Guide to First‐passage Processes , 2003 .

[234]  H. Obuse,et al.  Anomalously localized states and multifractal correlations of critical wave functions in two-dimensional electron systems with spin-orbital interactions , 2004 .

[235]  Denis S. Grebenkov,et al.  Laplacian Eigenfunctions in NMR. I. A Numerical Tool , 2008 .

[236]  Tom Carroll,et al.  Brownian motion and the fundamental frequency of a drum , 1994 .

[237]  Michael J. Ward,et al.  Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps , 2005, European Journal of Applied Mathematics.

[238]  Marie-Thérèse Kohler-Jobin Sur la première fonction propre d'une membrane: une extension àN dimensions de l'inégalité isopérimétrique de Payne-Rayner , 1977 .

[239]  M. van den Berg,et al.  Asymptotics for the Heat Content of a Planar Region with a Fractal Polygonal Boundary , 1999 .

[240]  F. W. J. Olver,et al.  Some new asymptotic expansions for Bessel functions of large orders , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[241]  P. Gilkey,et al.  Heat content asymptotics for operators of laplace type with Neumann boundary conditions , 1994 .

[242]  B. Sapoval,et al.  Localization and increased damping in irregular acoustic cavities , 2007 .

[243]  Lawrence E. Payne,et al.  An isoperimetric inequality for the first eigenfunction in the fixed membrane problem , 1972 .

[244]  Biao Wu,et al.  Quantum chaos in a ripple billiard. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[245]  L. A. Cafferelli,et al.  An Optimal Partition Problem for Eigenvalues , 2007, J. Sci. Comput..

[246]  Nicolas Burq,et al.  Bouncing Ball Modes and Quantum Chaos , 2003, SIAM Rev..

[247]  Denis S. Grebenkov,et al.  Trapped modes in finite quantum waveguides , 2011, 1112.1160.

[248]  Sunghwan Rim,et al.  Quasiscarred resonances in a spiral-shaped microcavity. , 2004, Physical review letters.

[249]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[250]  H. Donnelly,et al.  Quantum unique ergodicity , 2002 .

[251]  Giulio Casati,et al.  The quantum mechanics of chaotic billiards , 1999 .

[252]  E. Heller,et al.  Measuring scars of periodic orbits. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[253]  James B. Kennedy,et al.  An isoperimetric inequality for the second eigenvalue of the Laplacian with Robin boundary conditions , 2008 .

[254]  Richard L. Liboff Circular-sector quantum-billiard and allied configurations , 1994 .

[255]  Michel L. Lapidus,et al.  Eigenfunctions of the Koch snowflake domain , 1995 .

[256]  R. Liboff,et al.  Nodal‐surface conjectures for the convex quantum billiard , 1994 .

[257]  Peter Sarnak,et al.  Spectra and eigenfunctions of laplacians , 1997 .

[258]  Pier Domenico Lamberti,et al.  Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators , 2010, 1012.4961.

[259]  E. B. Davies,et al.  Spectral stability of the Neumann Laplacian , 2001 .

[260]  Vergini,et al.  Calculation by scaling of highly excited states of billiards. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[261]  Peter Stollmann,et al.  Caught by Disorder: Bound States in Random Media , 2001 .

[262]  Bellomo,et al.  State scarring by "ghosts" of periodic orbits. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[263]  A V Hershey,et al.  Computation of Special Functions , 1978 .

[264]  Massimo Lanza de Cristoforis,et al.  Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole , 2012 .

[265]  I. Stakgold,et al.  On the mean value of the fundamental mode in the fixed membrane problem , 1973 .

[266]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[267]  José M. Arrieta,et al.  Rates of eigenvalues on a dumbbell domain. Simple eigenvalue case , 1995 .

[268]  Lev Kaplan,et al.  Linear and Nonlinear Theory of Eigenfunction Scars , 1998, chao-dyn/9809011.

[269]  Jun Kigami,et al.  Weyl's problem for the spectral distribution of Laplacians on P.C.F. self-similar fractals , 1993 .

[270]  James Ralston,et al.  On the construction of quasimodes associated with stable periodic orbits , 1979 .

[271]  R. Benguria,et al.  Isoperimetric Inequalities for Eigenvalues of the Laplacian , 2007 .

[272]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[273]  Jack K. Hale,et al.  Eigenvalues and Perturbed Domains , 2005 .

[274]  M. Segev,et al.  Transport and Anderson localization in disordered two-dimensional photonic lattices , 2007, Nature.

[275]  K. Ishii,et al.  Localization of Eigenstates and Transport Phenomena in the One-Dimensional Disordered System , 1973 .

[276]  H. Weyl Ueber die asymptotische Verteilung der Eigenwerte , 1911 .

[277]  Leonid Friedlander,et al.  On the spectrum of the Dirichlet Laplacian in a narrow strip , 2007 .

[278]  Martin T. Barlow,et al.  Brownian motion on the Sierpinski gasket , 1988 .

[279]  Susanna Terracini,et al.  Singularity of eigenfunctions at the junction of shrinking tubes, Part II☆ , 2012, 1202.4414.

[280]  Jun Kigami,et al.  Localized Eigenfunctions of the Laplacian on p.c.f. Self‐Similar Sets , 1997 .

[281]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[282]  Lehel Banjai,et al.  Eigenfrequencies of fractal drums , 2007 .

[283]  E. Davies,et al.  Eigenvalue stability bounds via weighted Sobolev spaces , 1993 .

[284]  Dorin Bucur,et al.  Minimization of the third eigenvalue of the Dirichlet Laplacian , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[285]  E. Davies,et al.  Trace properties of the Dirichlet Laplacian , 1985 .

[286]  R. Liboff,et al.  The polygon quantum‐billiard problem , 1994 .

[287]  Fishman,et al.  Semiclassical criterion for scars in wave functions of chaotic systems. , 1994, Physical review letters.

[288]  Alexander Figotin,et al.  Localization of Classical Waves II: Electromagnetic Waves , 1997 .

[289]  Leonid Polterovich,et al.  Nodal inequalities on surfaces , 2006, Mathematical Proceedings of the Cambridge Philosophical Society.

[290]  Naoki Saito,et al.  Analysis of Neuronal Dendrite Patterns Using Eigenvalues of Graph Laplacians , 2009, JSIAM Lett..

[291]  Joseph B. Hubbard,et al.  Diffusion in a Medium with a Random Distribution of Static Traps , 1983 .

[292]  Satoshi Kosugi A semilinear elliptic equation in a thin network-shaped domain , 2000 .

[293]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[294]  Richard F. Bass,et al.  On Domain Monotonicity of the Neumann Heat Kernel , 1993 .

[295]  Dorin Bucur,et al.  Optimal Partitions for Eigenvalues , 2009, SIAM J. Sci. Comput..

[296]  Allan N. Kaufman,et al.  Spectrum and Eigenfunctions for a Hamiltonian with Stochastic Trajectories , 1979 .

[297]  F. Ursell,et al.  Trapping modes in the theory of surface waves , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[298]  K. Burdzy,et al.  On the “Hot Spots” Conjecture of J. Rauch , 1999 .

[299]  Marko Robnik,et al.  Study of Regular and Irregular States in Generic Systems , 1999, nlin/0003061.

[300]  George Polya,et al.  On the Eigenvalues of Vibrating Membranes(In Memoriam Hermann Weyl) , 1961 .

[301]  José M. Arrieta,et al.  DYNAMICS IN DUMBBELL DOMAINS II. THE LIMITING PROBLEM , 2009 .

[302]  Tobin A. Driscoll,et al.  Computing Eigenmodes of Elliptic Operators Using Radial Basis Functions , 2003 .

[303]  Akira Shudo,et al.  Polygonal billiards: Correspondence between classical trajectories and quantum eigenstates , 1995 .

[304]  P. Exner,et al.  Bound states and scattering in quantum waveguides coupled laterally through a boundary window , 1996 .

[305]  S. Mayboroda,et al.  Strong localization induced by one clamped point in thin plate vibrations. , 2009, Physical review letters.

[306]  Qing-Ming Cheng,et al.  INEQUALITIES FOR EIGENVALUES OF THE LAPLACIAN , 2011 .

[307]  N. Thanh,et al.  Localization of Laplacian Eigenfunctions in Simple and Irregular Domains , 2012 .

[308]  O'Connor,et al.  Quantum localization for a strongly classically chaotic system. , 1988, Physical review letters.

[309]  Dmitri Vassiliev,et al.  Spectral asymptotics, renewal theorem, and the Berry conjecture for a class of fractals , 1996 .

[310]  M. van den Berg On the L infinity norm of the first eigenfunction of the Dirichlet Laplacian , 2000 .

[311]  Salvatore Torquato,et al.  Diffusion and reaction among traps: some theoretical and simulation results , 1991 .

[312]  Sidney C. Port,et al.  Brownian Motion and Classical Potential Theory , 1978 .

[313]  G. Pólya,et al.  Isoperimetric inequalities in mathematical physics , 1951 .

[314]  Tadashi Shima,et al.  On a spectral analysis for the Sierpinski gasket , 1992 .

[315]  J. Goldstone,et al.  Bound states in twisting tubes. , 1992, Physical review. B, Condensed matter.

[316]  V. Amar,et al.  Schrödinger equation for convex plane polygons: A tiling method for the derivation of eigenvalues and eigenfunctions , 1991 .

[317]  V. M. Babich,et al.  Eigenfunctions Concentrated Near a Closed Geodesic , 1968 .

[318]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[319]  Giuseppe Buttazzo,et al.  Spectral optimization problems , 2010, 1012.3299.

[320]  K. Svoboda,et al.  Time-dependent diffusion of water in a biological model system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[321]  P. M. Platzman,et al.  Microwave localization by two-dimensional random scattering , 1991, Nature.

[322]  F. B. Introduction to Bessel Functions , 1939, Nature.

[323]  Weidenmüller,et al.  Distribution of eigenmodes in a superconducting stadium billiard with chaotic dynamics. , 1992, Physical review letters.

[324]  J Schwinger ON THE BOUND STATES OF A GIVEN POTENTIAL. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[325]  Lev Kaplan,et al.  Weak quantum ergodicity , 1998, chao-dyn/9810002.

[326]  Petr Šeba,et al.  Bound states in curved quantum waveguides , 1989 .

[327]  E. Bogomolny,et al.  Nearest-neighbor distribution for singular billiards. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[328]  Eric J. Heller,et al.  Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits , 1984 .

[329]  B. Dietz,et al.  Properties of nodal domains in a pseudointegrable barrier billiard. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[330]  Peter Sarnak,et al.  The behaviour of eigenstates of arithmetic hyperbolic manifolds , 1994 .

[331]  Gregor Tanner,et al.  How chaotic is the stadium billiard? A semiclassical analysis , 1996, chao-dyn/9610013.

[332]  Benjamin S. White,et al.  Localization and mode conversion for elastic waves in randomly layered media II , 1996 .

[333]  Alexander Figotin,et al.  Localization of light in lossless inhomogeneous dielectrics , 1998 .

[334]  Giulio Casati,et al.  Quantum chaos: unexpected complexity , 1995 .

[335]  Denis S. Grebenkov,et al.  Localization of Laplacian Eigenfunctions in Circular, Spherical, and Elliptical Domains , 2012, SIAM J. Appl. Math..

[336]  Alexander Figotin,et al.  Localization of classical waves I: Acoustic waves , 1996 .

[337]  Richard F. Bass,et al.  Fiber Brownian motion and the `hot spots''problem Duke Math , 2000 .

[338]  M BrianJ.,et al.  EIGENSTRUCTURE OF THE EQUILATERAL TRIANGLE PART IV : THE ABSORBING BOUNDARY , 2011 .

[339]  Cho,et al.  High-power directional emission from microlasers with chaotic resonators , 1998, Science.

[340]  H. Stöckmann,et al.  Quantum Chaos: An Introduction , 1999 .

[341]  R. Strichartz ANALYSIS ON FRACTALS , 1999 .

[342]  Rustem R. Gadyl'shin,et al.  On the eigenvalues of a “dumb-bell with a thin handle” , 2005 .

[343]  B. Simon Functional integration and quantum physics , 1979 .

[344]  M. Flucher,et al.  Approximation of Dirichlet Eigenvalues on Domains with Small Holes , 1995 .

[345]  P. Duclos,et al.  Geometrically induced discrete spectrum in curved tubes , 2004 .

[346]  Timo Betcke,et al.  Quantum mushroom billiards. , 2006, Chaos.

[347]  N. Mclachlan Theory and Application of Mathieu Functions , 1965 .

[348]  R. Benguria,et al.  A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions , 1992 .

[349]  G. Golub,et al.  Inverse Eigenvalue Problems: Theory, Algorithms, and Applications , 2005 .

[350]  B. Sapoval,et al.  Fast optimization of microwave absorbers , 2012, 2012 International Conference on Mathematical Methods in Electromagnetic Theory.

[351]  A. Figotin,et al.  Localized classical waves created by defects , 1997 .

[352]  Chinnery,et al.  Experimental visualization of acoustic resonances within a stadium-shaped cavity. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[353]  Andrew Hassell,et al.  Fast Computation of High‐Frequency Dirichlet Eigenmodes via Spectral Flow of the Interior Neumann‐to‐Dirichlet Map , 2011, 1112.5665.

[354]  Denis S. Grebenkov,et al.  Partially Reflected Brownian Motion: A Stochastic Approach to Transport Phenomena , 2006, math/0610080.

[355]  Massimo Inguscio,et al.  Anderson localization of a non-interacting Bose–Einstein condensate , 2008, Nature.

[356]  Michel L. Lapidus,et al.  Counterexamples to the modified Weyl–Berry conjecture on fractal drums , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.

[357]  Michelle Schatzman,et al.  On the Eigenvalues of the Laplace Operator on a Thin Set with Neumann Boundary Conditions , 1996 .

[358]  Olaf Post Branched quantum wave guides with Dirichlet boundary conditions: the decoupling case , 2005 .

[359]  Shuichi Jimbo,et al.  The singularly perturbed domain and the characterization for the eigenfunctions with Neumann boundary condition , 1989 .

[360]  Lloyd N. Trefethen,et al.  A Multipole Method for Schwarz-Christoffel Mapping of Polygons with Thousands of Sides , 2003, SIAM J. Sci. Comput..

[361]  Pier Domenico Lamberti,et al.  Spectral stability of Dirichlet second order uniformly elliptic operators , 2008 .

[362]  L. W.,et al.  The Theory of Sound , 1898, Nature.

[363]  Daniel Daners,et al.  Dirichlet problems on varying domains , 2003 .

[364]  N. S. Nadirashvili COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: On the length of the nodal curve of an eigenfunction of the Laplace operator , 1988 .

[365]  R. Benguria,et al.  More bounds on eigenvalue ratios for Dirichlet Laplacians in N dimensions , 1993 .

[366]  Rodrigo Bañuelos,et al.  Sharp Estimates for Dirichlet Eigenfunctions in Simply Connected Domains , 1996 .

[367]  Lloyd N. Trefethen,et al.  Reviving the Method of Particular Solutions , 2005, SIAM Rev..

[368]  M. V. Berry,et al.  Distribution of Modes in Fractal Resonators , 1979 .

[369]  B. Sapoval,et al.  Localisation and damping in resonators with complex geometry , 2008 .

[370]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[371]  Leonid Friedlander,et al.  Some inequalities between Dirichlet and neumann eigenvalues , 1991 .

[372]  T. K. Carne HEAT KERNELS AND SPECTRAL THEORY: (Cambridge Tracts in Mathematics 92) , 1990 .

[373]  Marie -Thérèse Kohler-Jobin Isoperimetric monotonicity and isoperimetric inequalities of Payne-Rayner type for the first eigenfunction of the Helmholtz problem , 1981 .

[374]  H. Donnelly,et al.  Spectral gap for convex planar domains , 2011 .

[375]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[376]  Michael V Berry,et al.  Semiclassical approximations in wave mechanics , 1972 .

[377]  Denis S. Grebenkov,et al.  Exponential decay of Laplacian eigenfunctions in domains with branches of variable cross-sectional profiles , 2011, 1109.3408.

[378]  E. Heller,et al.  Localization of eigenfunctions in the stadium billiard. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[379]  Wolfgang Arendt,et al.  Weyl's Law: Spectral Properties of the Laplacian in Mathematics and Physics , 2009 .

[380]  V. Burenkov,et al.  Spectral stability of the Robin Laplacian , 2008 .

[381]  N. Nadirashvili,et al.  MULTIPLE EIGENVALUES OF THE LAPLACE OPERATOR , 1988 .

[382]  Mullen,et al.  Multiple bound states in sharply bent waveguides. , 1993, Physical review. B, Condensed matter.

[383]  Ya Yan Lu,et al.  Eigenvalues of the Laplacian through boundary integral equations , 1991 .

[384]  I. Graham,et al.  Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation , 2010, 1007.3074.

[385]  J. Douglas Aspects and applications of the random walk , 1995 .

[386]  R. Parker,et al.  Resonance effects in wake shedding from parallel plates: Some experimental observations , 1966 .

[387]  Leonid Parnovski,et al.  Trapped modes in acoustic waveguides , 1998 .

[388]  Bernard Sapoval,et al.  Observation of vibrational modes of irregular drums , 1998 .

[389]  J. Keller,et al.  Range of the first two eigenvalues of the laplacian , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[390]  David Jerison,et al.  The diameter of the first nodal line of a convex domains , 1995 .

[391]  N. Nadirashvili,et al.  The Erwin Schrr Odinger International Institute for Mathematical Physics the Nodal Line of the Second Eigenfunction of the Laplacian in R 2 Can Be Closed , 2022 .

[392]  Shimizu,et al.  Extensive numerical study of spectral statistics for rational and irrational polygonal billiards. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[393]  David E. Edmunds,et al.  Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.

[394]  Ronald Smith Bouncing Ball Waves , 1974 .

[395]  Peter B. Gilkey,et al.  The asymptotics of the Laplacian on a manifold with boundary , 1990 .

[396]  P. Duclos,et al.  CURVATURE-INDUCED BOUND STATES IN QUANTUM WAVEGUIDES IN TWO AND THREE DIMENSIONS , 1995 .

[397]  Joseph B. Hubbard,et al.  Reaction diffusion in a medium containing a random distribution of nonoverlapping traps , 1984 .

[398]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[399]  Tomaž Prosen,et al.  Quantization of a generic chaotic 3D billiard with smooth boundary. I. Energy level statistics , 1996, chao-dyn/9611015.

[400]  M. V. Berry,et al.  Pseudointegrable systems in classical and quantum mechanics , 1981 .

[401]  H. McKean,et al.  Curvature and the Eigenvalues of the Laplacian , 1967 .

[402]  Mohamed A. Khabou,et al.  Shape Recognition Based on Eigenvalues of the Laplacian , 2011 .

[403]  R. Liboff,et al.  The Hexagon Quantum Billiard , 2001 .

[404]  M. Mirzakhani,et al.  Introduction to Ergodic theory , 2010 .

[405]  G. Lamé,et al.  Leçons Sur la Théorie Mathématique de L'élasticité des Corps Solides , 2009 .

[406]  Giuseppe Buttazzo,et al.  Shape optimization for Dirichlet problems: Relaxed formulation and optimality conditions , 1991 .

[407]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[408]  Joseph Hersch,et al.  Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum , 1960 .

[409]  Jaroslav Dittrich,et al.  Curved planar quantum wires with Dirichlet and Neumann boundary conditions , 2002 .

[410]  Joseph B. Keller,et al.  Asymptotic solution of eigenvalue problems , 1960 .

[411]  O'Connor,et al.  Properties of random superpositions of plane waves. , 1987, Physical review letters.

[412]  S. Ozawa,et al.  Eigenvalues of the Laplacian under singular variation of domains舒the Robin problem with obstacle of general shape , 1996 .

[413]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[414]  Hans F. Weinberger,et al.  An Isoperimetric Inequality for the N-Dimensional Free Membrane Problem , 1956 .

[415]  Fresnel filtering in lasing emission from scarred modes of wave-chaotic optical resonators. , 2002, Physical review letters.

[416]  Srinivas Sridhar,et al.  Microwave experiments on chaotic billiards , 1992 .

[417]  N. Nadirashvili,et al.  On the Multiplicity of Eigenvalues of the Laplacian on Surfaces , 1999 .

[418]  Antoine Henrot,et al.  Rebuttal of Donnelly’s paper on the spectral gap , 2011 .

[419]  Daniel Grieser,et al.  Asymptotics of the first nodal line of a convex domain , 1996 .

[420]  José M. Arrieta,et al.  Neumann Eigenvalue Problems on Exterior Perturbations of the Domain , 1995 .

[421]  Hans Lewy On the mininum number of domains in which the nodal lines of spherical harmonics divide the sphere , 1977 .

[422]  Michael V Berry,et al.  Regular and irregular semiclassical wavefunctions , 1977 .

[423]  Jeffrey H. Albert,et al.  Generic properties of eigenfunctions of elliptic partial differential operators , 1978 .

[424]  Brian J. McCartin,et al.  Eigenstructure of the Equilateral Triangle, Part I: The Dirichlet Problem , 2003, SIAM Rev..

[425]  David Krejcirik,et al.  Geometric Versus Spectral Convergence for the Neumann Laplacian under Exterior Perturbations of the Domain , 2009, 0901.4726.

[426]  Fikret Er,et al.  Hot spots. , 2014, CJEM.

[427]  Shmuel Agmon,et al.  Lectures on exponential decay of solutions of second order elliptic equations : bounds on eigenfunctions of N-body Schrödinger operators , 1983 .

[428]  Serguei A. Nazarov Localization effects for eigenfunctions near to the edge of a thin domain , 2002 .

[429]  P. Freitas,et al.  Waveguides with Combined Dirichlet and Robin Boundary Conditions , 2006 .

[430]  Naoki Saito,et al.  Data Analysis and Representation on a General Domain using Eigenfunctions of Laplacian , 2008 .

[431]  L. Payne,et al.  Inequalities for Eigenvalues of Membranes and Plates , 1955 .

[432]  Daniel Grieser,et al.  The size of the first eigenfunction of a convex planar domain , 1998 .

[433]  Lawrence E. Payne,et al.  On two conjectures in the fixed membrane eigenvalue problem , 1973 .

[434]  V F Lazutkin,et al.  THE EXISTENCE OF CAUSTICS FOR A BILLIARD PROBLEM IN A CONVEX DOMAIN , 1973 .

[435]  E. Bogomolny,et al.  Structure of wave functions of pseudointegrable billiards. , 2004, Physical review letters.

[436]  Dmitry Jakobson,et al.  Geometric properties of eigenfunctions , 2001 .

[437]  Dorin Bucur,et al.  Variational Methods in Shape Optimization Problems , 2005, Progress in Nonlinear Differential Equations and Their Applications.

[438]  B. Sapoval,et al.  Vibrations of fractal drums. , 1991, Physical review letters.

[439]  Edouard Oudet,et al.  Minimizing the Second Eigenvalue of the Laplace Operator with Dirichlet Boundary Conditions , 2003 .

[440]  S. Minakshisundaram,et al.  Eigenfunctions on Riemannian Manifolds , 1953 .

[441]  M. Solomjak,et al.  Spectral Theory of Self-Adjoint Operators in Hilbert Space , 1987 .

[442]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[443]  David Jerison,et al.  The “hot spots” conjecture for domains with two axes of symmetry , 2000 .

[444]  A. Mirlin,et al.  Anderson Transitions , 2007, 0707.4378.

[445]  Jack K. Hale,et al.  Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations , 2005 .

[446]  Sapoval,et al.  Vibrations of strongly irregular or fractal resonators. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[447]  Jimbo Shuichi,et al.  Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels , 1992 .

[448]  Michael Menzinger,et al.  Laplacian spectra as a diagnostic tool for network structure and dynamics. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[449]  B Sapoval,et al.  Increased damping of irregular resonators. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[450]  Jan Wiersig,et al.  Spectral properties of quantized barrier billiards. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[451]  Barry Simon,et al.  Weakly coupled bound states in quantum waveguides , 1997 .

[452]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[453]  D. V. Evans,et al.  Existence theorems for trapped modes , 1994, Journal of Fluid Mechanics.

[454]  G. Stolz,et al.  An Introduction to the Mathematics of Anderson Localization , 2011, 1104.2317.

[455]  Peter Sarnak,et al.  Recent progress on the quantum unique ergodicity conjecture , 2011 .

[456]  Giovanni Alessandrini,et al.  Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains , 1994 .

[457]  P. Grassberger,et al.  The long time properties of diffusion in a medium with static traps , 1982 .

[458]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[459]  Antoine Lejay,et al.  Computing the principal eigenvalue of the Laplace operator by a stochastic method , 2007, Math. Comput. Simul..

[460]  Michel L. Lapidus,et al.  SNOWFLAKE HARMONICS AND COMPUTER GRAPHICS: NUMERICAL COMPUTATION OF SPECTRA ON FRACTAL DRUMS , 1996 .

[461]  T. Prosen,et al.  Quantization of generic chaotic 3D billiard with smooth boundary II: structure of high-lying eigenstates , 1996, chao-dyn/9611016.

[462]  D. Thouless,et al.  Electrons in disordered systems and the theory of localization , 1974 .

[463]  C. M. Linton,et al.  Embedded trapped modes in water waves and acoustics , 2007 .

[464]  Uzy Smilansky,et al.  Nodal domains statistics: a criterion for quantum chaos. , 2001, Physical review letters.

[465]  M BrianJ.,et al.  On Polygonal Domains with Trigonometric Eigenfunctions of the Laplacian under Dirichlet or Neumann Boundary Conditions , 2008 .

[466]  Giuseppe Cardone,et al.  The Localization Effect for Eigenfunctions of the Mixed Boundary Value Problem in a Thin Cylinder with Distorted Ends , 2010, SIAM J. Math. Anal..

[467]  F. Haake Quantum signatures of chaos , 1991 .

[468]  J. Kuttler Direct Methods for Computing Eigenvalues of the Finite-Difference Laplacian , 1974 .

[469]  E. Bogomolny,et al.  Percolation model for nodal domains of chaotic wave functions. , 2001, Physical review letters.

[470]  D. V. Evans,et al.  Trapped acoustic modes , 1992 .

[471]  Schwartz,et al.  Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. , 1993, Physical review. B, Condensed matter.

[472]  Bernard Sapoval,et al.  IRREGULAR AND FRACTAL RESONATORS WITH NEUMANN BOUNDARY CONDITIONS : DENSITY OF STATES AND LOCALIZATION , 1997 .

[473]  R. Parker Resonance effects in wake shedding from parallel plates: Calculation of resonant frequencies , 1967 .

[474]  Martin T. Barlow,et al.  Diffusions on fractals , 1998 .

[475]  P. Freitas,et al.  A lower bound to the spectral threshold in curved tubes , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[476]  Steve Zelditch,et al.  Spectral determination of analytic bi-axisymmetric plane domains , 2000 .

[477]  Tomi Ohtsuki,et al.  Numerical estimation of the β function in two-dimensional systems with spin-orbit coupling , 2004 .

[478]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[479]  Denis S. Grebenkov,et al.  Laplacian eigenfunctions in NMR. II. Theoretical advances , 2009 .

[480]  Gilbert Strang,et al.  The Laplacian eigenvalues of a polygon , 2004 .

[481]  G. Szegő,et al.  Inequalities for Certain Eigenvalues of a Membrane of Given Area , 1954 .

[482]  Michael J. Ward,et al.  Optimizing the principal eigenvalue of the Laplacian in a sphere with interior traps , 2011, Math. Comput. Model..