Structural basis of neurosteroid anesthetic action on GABAA receptors

[1]  R. M. Walsh,et al.  Structure of a human synaptic GABA-A receptor , 2018, Nature.

[2]  Wei Huang,et al.  Cryo-EM structure of 5-HT3A receptor in its resting conformation , 2018, Nature Communications.

[3]  M. Haburcak,et al.  Alphaxalone Binds in Inner Transmembrane &bgr;+–&agr;− Interfaces of &agr;1&bgr;3&ggr;2 &ggr;-Aminobutyric Acid Type A Receptors , 2017, Anesthesiology.

[4]  E. Pardon,et al.  Structural basis for GABAA receptor potentiation by neurosteroids , 2017, Nature Structural & Molecular Biology.

[5]  P. Biggin,et al.  Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites , 2017, Nature Structural & Molecular Biology.

[6]  Xin Huang,et al.  Crystal Structures of Human GlyRα3 Bound to Ivermectin. , 2017, Structure.

[7]  A. Cohen,et al.  Structural Basis of Alcohol Inhibition of the Pentameric Ligand-Gated Ion Channel ELIC. , 2017, Structure.

[8]  S. Forman,et al.  Tryptophan and Cysteine Mutations in M1 Helices of &agr;1&bgr;3&ggr;2L &ggr;-Aminobutyric Acid Type A Receptors Indicate Distinct Intersubunit Sites for Four Intravenous Anesthetics and One Orphan Site , 2016, Anesthesiology.

[9]  J. Steinbach,et al.  Multiple Non-Equivalent Interfaces Mediate Direct Activation of GABAA Receptors by Propofol , 2016, Current neuropharmacology.

[10]  C. L. Morales-Pérez,et al.  X-ray structure of the human alpha 4 beta 2 nicotinic receptor. , 2016 .

[11]  C. L. Morales-Pérez,et al.  X-ray structure of the human α4β2 nicotinic receptor , 2016, Nature.

[12]  Naomichi Matsumoto,et al.  De novo GABRA1 mutations in Ohtahara and West syndromes , 2016, Epilepsia.

[13]  R. Eckenhoff,et al.  Common Anesthetic-binding Site for Inhibition of Pentameric Ligand-gated Ion Channels , 2016, Anesthesiology.

[14]  N. Franks,et al.  Mutational Analysis of the Putative High-Affinity Propofol Binding Site in Human β3 Homomeric GABAA Receptors , 2015, Molecular Pharmacology.

[15]  Xin Huang,et al.  Crystal structure of human glycine receptor-α3 bound to antagonist strychnine , 2015, Nature.

[16]  A. Cohen,et al.  Direct Pore Binding as a Mechanism for Isoflurane Inhibition of the Pentameric Ligand-gated Ion Channel ELIC , 2015, Scientific Reports.

[17]  E. Gouaux,et al.  Glycine receptor mechanism elucidated by electron cryo-microscopy , 2015, Nature.

[18]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[19]  Marco Cecchini,et al.  The nicotinic acetylcholine receptor and its prokaryotic homologues: Structure, conformational transitions & allosteric modulation , 2015, Neuropharmacology.

[20]  D. Mowrey,et al.  Conformational Changes Underlying Desensitization of the Pentameric Ligand-Gated Ion Channel ELIC. , 2015, Structure.

[21]  T. Smart,et al.  The desensitization gate of inhibitory Cys-loop receptors , 2015, Nature Communications.

[22]  Pei Tang,et al.  Ensemble-based virtual screening for cannabinoid-like potentiators of the human glycine receptor α1 for the treatment of pain. , 2015, Journal of medicinal chemistry.

[23]  M. Delarue,et al.  Allosteric and hyperekplexic mutant phenotypes investigated on an α1 glycine receptor transmembrane structure , 2015, Proceedings of the National Academy of Sciences.

[24]  Surajit Banerjee,et al.  X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors , 2014, Nature.

[25]  T. Tomizaki,et al.  X-ray structure of the mouse serotonin 5-HT3 receptor , 2014, Nature.

[26]  R. Eckenhoff,et al.  Multiple Propofol-binding Sites in a γ-Aminobutyric Acid Type A Receptor (GABAAR) Identified Using a Photoreactive Propofol Analog*♦ , 2014, The Journal of Biological Chemistry.

[27]  A. R. Aricescu,et al.  Crystal structure of a human GABAA receptor , 2014, Nature.

[28]  V. Bondarenko,et al.  NMR structures of the human α7 nAChR transmembrane domain and associated anesthetic binding sites. , 2014, Biochimica et biophysica acta.

[29]  D. Mowrey,et al.  ELIC-α7 Nicotinic Acetylcholine Receptor (α7nAChR) Chimeras Reveal a Prominent Role of the Extracellular-Transmembrane Domain Interface in Allosteric Modulation* , 2014, The Journal of Biological Chemistry.

[30]  J. Changeux,et al.  Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation , 2013, Proceedings of the National Academy of Sciences.

[31]  Klaus Schulten,et al.  Rapid parameterization of small molecules using the force field toolkit , 2013, J. Comput. Chem..

[32]  Peijun Zhang,et al.  Open-channel structures of the human glycine receptor α1 full-length transmembrane domain. , 2013, Structure.

[33]  Michael R. Johnson,et al.  De novo mutations in the classic epileptic encephalopathies , 2013, Nature.

[34]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[35]  A. Keramidas,et al.  An outline of desensitization in pentameric ligand-gated ion channel receptors , 2013, Cellular and Molecular Life Sciences.

[36]  M. H. Cheng,et al.  Asymmetric ligand binding facilitates conformational transitions in pentameric ligand-gated ion channels. , 2013, Journal of the American Chemical Society.

[37]  J. Steinbach,et al.  A neurosteroid potentiation site can be moved among GABAA receptor subunits , 2012, The Journal of physiology.

[38]  R. Dutzler,et al.  Inhibition of the Prokaryotic Pentameric Ligand-Gated Ion Channel ELIC by Divalent Cations , 2012, PLoS biology.

[39]  S. Chakrapani,et al.  Conformational Transitions Underlying Pore Opening and Desensitization in Membrane-embedded Gloeobacter violaceus Ligand-gated Ion Channel (GLIC) , 2012, The Journal of Biological Chemistry.

[40]  V. Bondarenko,et al.  NMR structures of the transmembrane domains of the α4β2 nAChR. , 2012, Biochimica et biophysica acta.

[41]  S. Chakrapani,et al.  Desensitization Mechanism in Prokaryotic Ligand-gated Ion Channel , 2012, The Journal of Biological Chemistry.

[42]  D. van der Spoel,et al.  Large influence of cholesterol on solute partitioning into lipid membranes. , 2012, Journal of the American Chemical Society.

[43]  K. Satyshur,et al.  Site-Directed Spin Labeling Reveals Pentameric Ligand-Gated Ion Channel Gating Motions , 2012, PLoS biology.

[44]  D. C. Chiara,et al.  Mapping general anesthetic binding site(s) in human α1β3 γ-aminobutyric acid type A receptors with [³H]TDBzl-etomidate, a photoreactive etomidate analogue. , 2012, Biochemistry.

[45]  I. Módy,et al.  Extrasynaptic GABAA Receptors: Their Function in the CNS and Implications for Disease , 2012, Neuron.

[46]  A. Cohen,et al.  Structure of the pentameric ligand-gated ion channel ELIC cocrystallized with its competitive antagonist acetylcholine , 2012, Nature Communications.

[47]  D. Mowrey,et al.  Isoflurane alters the structure and dynamics of GLIC. , 2011, Biophysical journal.

[48]  Eric Gouaux,et al.  Principles of activation and permeation in an anion-selective Cys-loop receptor , 2011, Nature.

[49]  R. Dutzler,et al.  Ligand Activation of the Prokaryotic Pentameric Ligand-Gated Ion Channel ELIC , 2011, PLoS biology.

[50]  K. Miller,et al.  Anesthetic sites and allosteric mechanisms of action on Cys-loop ligand-gated ion channels , 2011, Canadian journal of anaesthesia = Journal canadien d'anesthesie.

[51]  C. Zorumski,et al.  Neurosteroid analogues. 15. A comparative study of the anesthetic and GABAergic actions of alphaxalone, Δ16-alphaxalone and their corresponding 17-carbonitrile analogues. , 2010, Bioorganic & medicinal chemistry letters.

[52]  Maarten G. Wolf,et al.  g_membed: Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation , 2010, J. Comput. Chem..

[53]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[54]  Marc Baaden,et al.  One-microsecond molecular dynamics simulation of channel gating in a nicotinic receptor homologue , 2010, Proceedings of the National Academy of Sciences.

[55]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[56]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[57]  Alastair M. Hosie,et al.  Conserved site for neurosteroid modulation of GABAA receptors , 2009, Neuropharmacology.

[58]  R. Olsen,et al.  GABAA receptors: Subtypes provide diversity of function and pharmacology , 2009, Neuropharmacology.

[59]  S. Forman,et al.  Tryptophan Mutations at Azi-Etomidate Photo-Incorporation Sites on α1 or β2 Subunits Enhance GABAA Receptor Gating and Reduce Etomidate Modulation , 2008, Molecular Pharmacology.

[60]  N. Franks General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal , 2008, Nature Reviews Neuroscience.

[61]  R. Dutzler,et al.  X-ray structure of a prokaryotic pentameric ligand-gated ion channel , 2008, Nature.

[62]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[63]  Alastair M. Hosie,et al.  Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites , 2006, Nature.

[64]  R. Olsen,et al.  Identification of a GABAA Receptor Anesthetic Binding Site at Subunit Interfaces by Photolabeling with an Etomidate Analog , 2006, The Journal of Neuroscience.

[65]  T. Deeb,et al.  An Asymmetric Contribution to γ-Aminobutyric Type A Receptor Function of a Conserved Lysine within TM2–3 of α1, β2, and γ2 Subunits* , 2006, Journal of Biological Chemistry.

[66]  N. Unwin,et al.  Refined structure of the nicotinic acetylcholine receptor at 4A resolution. , 2005, Journal of molecular biology.

[67]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[68]  David C. Richardson,et al.  MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes , 2004, Nucleic Acids Res..

[69]  J. A. Peters,et al.  The interaction of anaesthetic steroids with recombinant glycine and GABAA receptors. , 2004, British journal of anaesthesia.

[70]  U. Rudolph,et al.  Mutational analysis of molecular requirements for the actions of general anaesthetics at the γ-aminobutyric acidA receptor subtype, α1β2γ2 , 2003, BMC pharmacology.

[71]  B. Antkowiak,et al.  General anesthetic actions in vivo strongly attenuated by a point mutation in the GABAA receptor β3 subunit , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[72]  J. Trudell,et al.  Coupling of agonist binding to channel gating in the GABAA receptor , 2003, Nature.

[73]  Yan Xu,et al.  NMR structures of the second transmembrane domain of the human glycine receptor alpha(1) subunit: model of pore architecture and channel gating. , 2002, Biophysical journal.

[74]  J. Reynolds,et al.  Modulation of GABA(A) receptor function by neuroactive steroids: evidence for heterogeneity of steroid sensitivity of recombinant GABA(A) receptor isoforms. , 1998, Canadian journal of physiology and pharmacology.

[75]  R. Harris,et al.  Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors , 1997, Nature.

[76]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[77]  S. Moss,et al.  A Functional Comparison of the Antagonists Bicuculline and Picrotoxin at Recombinant GABAA Receptors , 1996, Neuropharmacology.

[78]  M. Akabas,et al.  Identification of channel-lining residues in the M2 membrane-spanning segment of the GABA(A) receptor alpha1 subunit , 1996, The Journal of general physiology.

[79]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[80]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[81]  J. A. Peters,et al.  Modulation of GABAA receptor activity by alphaxalone , 1987, British journal of pharmacology.

[82]  T. Arndt Crystal , 2019, Springer Reference Medizin.

[83]  De novo mutations in epileptic encephalopathies , 2013 .

[84]  R. Dutzler,et al.  Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel , 2009, Nature.

[85]  U. Rudolph,et al.  Mutational analysis of molecular requirements for the actions of general anaesthetics at the gamma-aminobutyric acidA receptor subtype , alpha 1 beta 2 gamma 2 , 2007 .

[86]  T. Deeb,et al.  An asymmetric contribution to gamma-aminobutyric type A receptor function of a conserved lysine within TM2-3 of alpha1, beta2, and gamma2 subunits. , 2006, The Journal of biological chemistry.

[87]  W. Delano The PyMOL Molecular Graphics System , 2002 .