VanQver: the variational and adiabatically navigated quantum eigensolver

The accelerated progress in manufacturing noisy intermediate-scale quantum (NISQ) computing hardware has opened the possibility of exploring its application in transforming approaches to solving computationally challenging problems. The important limitations common among all NISQ computing technologies are the absence of error correction and the short coherence time, which limit the computational power of these systems. Shortening the required time of a single run of a quantum algorithm is essential for reducing environment-induced errors and for the efficiency of the computation. We have investigated the ability of a variational version of adiabatic quantum computation (AQC) to generate an accurate state more efficiently compared to existing adiabatic methods. The standard AQC method uses a time-dependent Hamiltonian, connecting the initial Hamiltonian with the final Hamiltonian. In the current approach, a navigator Hamiltonian is introduced which has a non-zero amplitude only in the middle of the annealing process. Both the initial and navigator Hamiltonians are determined using variational methods. A hermitian cluster operator, inspired by coupled-cluster theory and truncated to single and double excitations/de-excitations, is used as a navigator Hamiltonian. A comparative study of our variational algorithm (VanQver) with that of standard AQC, starting with a Hartree--Fock Hamiltonian, is presented. The results indicate that the introduction of the navigator Hamiltonian significantly improves the annealing time required to achieve chemical accuracy by two to three orders of magnitude. The efficiency of the method is demonstrated in the ground-state energy estimation of molecular systems, namely, H$_2$, P4, and LiH.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[3]  E. Wigner,et al.  About the Pauli exclusion principle , 1928 .

[4]  R. Feynman Simulating physics with computers , 1999 .

[5]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[6]  Dorit Aharonov,et al.  Polynomial simulations of decohered quantum computers , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[7]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[8]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[9]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[10]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[11]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[12]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[13]  Andrew M. Childs,et al.  Robustness of adiabatic quantum computation , 2001, quant-ph/0108048.

[14]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[15]  G. Aeppli,et al.  Tunable quantum tunnelling of magnetic domain walls , 2001, Nature.

[16]  E. Farhi,et al.  Quantum Adiabatic Evolution Algorithms with Different Paths , 2002, quant-ph/0208135.

[17]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[18]  E. Sjoqvist,et al.  Quantum adiabatic search with decoherence in the instantaneous energy eigenbasis (16 pages) , 2005, quant-ph/0507010.

[19]  D. Lidar,et al.  Adiabatic quantum computation in open systems. , 2005, Physical review letters.

[20]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[21]  N. Cerf,et al.  Noise resistance of adiabatic quantum computation using random matrix theory , 2004, quant-ph/0409127.

[22]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[23]  E. Farhi,et al.  Perturbative gadgets at arbitrary orders , 2008, 0802.1874.

[24]  M. Head‐Gordon,et al.  Chemistry on the computer , 2008 .

[25]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[26]  Jiangfeng Du,et al.  NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. , 2010, Physical review letters.

[27]  Alán Aspuru-Guzik,et al.  A study of heuristic guesses for adiabatic quantum computation , 2008, Quantum Inf. Process..

[28]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[29]  M. Amin,et al.  Algorithmic approach to adiabatic quantum optimization , 2011, 1108.3303.

[30]  W. Marsden I and J , 2012 .

[31]  P. Shor,et al.  Performance of the quantum adiabatic algorithm on random instances of two optimization problems on regular hypergraphs , 2012, 1208.3757.

[32]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[33]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[34]  Alán Aspuru-Guzik,et al.  Adiabatic Quantum Simulation of Quantum Chemistry , 2013, Scientific Reports.

[35]  L. Lamata,et al.  From transistor to trapped-ion computers for quantum chemistry , 2013, Scientific Reports.

[36]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[37]  J. Pittner,et al.  Adiabatic state preparation study of methylene. , 2014, The Journal of chemical physics.

[38]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[39]  J. Whitfield,et al.  Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register. , 2014, ACS nano.

[40]  Daniel A. Lidar,et al.  Decoherence in adiabatic quantum computation , 2015, 1503.08767.

[41]  Sarah E. Sofia,et al.  The Bravyi-Kitaev transformation: Properties and applications , 2015 .

[42]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[43]  M. Yung,et al.  Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure , 2015, 1506.00443.

[44]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[45]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[46]  I. Hen,et al.  Temperature Scaling Law for Quantum Annealing Optimizers. , 2017, Physical review letters.

[47]  J. Gambetta,et al.  Tapering off qubits to simulate fermionic Hamiltonians , 2017, 1701.08213.

[48]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[49]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[50]  Mark W. Johnson,et al.  Observation of topological phenomena in a programmable lattice of 1,800 qubits , 2018, Nature.

[51]  J. O'Brien,et al.  Witnessing eigenstates for quantum simulation of Hamiltonian spectra , 2016, Science Advances.

[52]  Daniel A. Lidar,et al.  Quantum annealing of the p -spin model under inhomogeneous transverse field driving , 2018, Physical Review A.

[53]  H. Nishimori,et al.  Exponential Speedup of Quantum Annealing by Inhomogeneous Driving of the Transverse Field , 2018, 1801.02005.

[54]  Daniel A. Lidar,et al.  Dynamics of reverse annealing for the fully connected p -spin model , 2018, Physical Review A.

[55]  Takeshi Yamazaki,et al.  Towards the Practical Application of Near-Term Quantum Computers in Quantum Chemistry Simulations: A Problem Decomposition Approach , 2018, ArXiv.

[56]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[57]  Tsuyoshi Murata,et al.  {m , 1934, ACML.