VanQver: the variational and adiabatically navigated quantum eigensolver
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] E. Wigner,et al. Über das Paulische Äquivalenzverbot , 1928 .
[3] E. Wigner,et al. About the Pauli exclusion principle , 1928 .
[4] R. Feynman. Simulating physics with computers , 1999 .
[5] J. Doll,et al. Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.
[6] Dorit Aharonov,et al. Polynomial simulations of decohered quantum computers , 1996, Proceedings of 37th Conference on Foundations of Computer Science.
[7] Seth Lloyd,et al. Universal Quantum Simulators , 1996, Science.
[8] D. Abrams,et al. Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.
[9] H. Nishimori,et al. Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.
[10] Rosenbaum,et al. Quantum annealing of a disordered magnet , 1999, Science.
[11] A. Kitaev,et al. Fermionic Quantum Computation , 2000, quant-ph/0003137.
[12] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[13] Andrew M. Childs,et al. Robustness of adiabatic quantum computation , 2001, quant-ph/0108048.
[14] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[15] G. Aeppli,et al. Tunable quantum tunnelling of magnetic domain walls , 2001, Nature.
[16] E. Farhi,et al. Quantum Adiabatic Evolution Algorithms with Different Paths , 2002, quant-ph/0208135.
[17] R. Car,et al. Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.
[18] E. Sjoqvist,et al. Quantum adiabatic search with decoherence in the instantaneous energy eigenbasis (16 pages) , 2005, quant-ph/0507010.
[19] D. Lidar,et al. Adiabatic quantum computation in open systems. , 2005, Physical review letters.
[20] M. Head‐Gordon,et al. Simulated Quantum Computation of Molecular Energies , 2005, Science.
[21] N. Cerf,et al. Noise resistance of adiabatic quantum computation using random matrix theory , 2004, quant-ph/0409127.
[22] Julia Kempe,et al. The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.
[23] E. Farhi,et al. Perturbative gadgets at arbitrary orders , 2008, 0802.1874.
[24] M. Head‐Gordon,et al. Chemistry on the computer , 2008 .
[25] B. Chakrabarti,et al. Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.
[26] Jiangfeng Du,et al. NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. , 2010, Physical review letters.
[27] Alán Aspuru-Guzik,et al. A study of heuristic guesses for adiabatic quantum computation , 2008, Quantum Inf. Process..
[28] P. Love,et al. The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.
[29] M. Amin,et al. Algorithmic approach to adiabatic quantum optimization , 2011, 1108.3303.
[30] W. Marsden. I and J , 2012 .
[31] P. Shor,et al. Performance of the quantum adiabatic algorithm on random instances of two optimization problems on regular hypergraphs , 2012, 1208.3757.
[32] Franco Nori,et al. QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..
[33] Franco Nori,et al. QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..
[34] Alán Aspuru-Guzik,et al. Adiabatic Quantum Simulation of Quantum Chemistry , 2013, Scientific Reports.
[35] L. Lamata,et al. From transistor to trapped-ion computers for quantum chemistry , 2013, Scientific Reports.
[36] Alán Aspuru-Guzik,et al. A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.
[37] J. Pittner,et al. Adiabatic state preparation study of methylene. , 2014, The Journal of chemical physics.
[38] Ryan Babbush,et al. The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.
[39] J. Whitfield,et al. Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register. , 2014, ACS nano.
[40] Daniel A. Lidar,et al. Decoherence in adiabatic quantum computation , 2015, 1503.08767.
[41] Sarah E. Sofia,et al. The Bravyi-Kitaev transformation: Properties and applications , 2015 .
[42] P. Coveney,et al. Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.
[43] M. Yung,et al. Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure , 2015, 1506.00443.
[44] Blake R. Johnson,et al. Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.
[45] J. Gambetta,et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.
[46] I. Hen,et al. Temperature Scaling Law for Quantum Annealing Optimizers. , 2017, Physical review letters.
[47] J. Gambetta,et al. Tapering off qubits to simulate fermionic Hamiltonians , 2017, 1701.08213.
[48] T. Monz,et al. Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.
[49] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[50] Mark W. Johnson,et al. Observation of topological phenomena in a programmable lattice of 1,800 qubits , 2018, Nature.
[51] J. O'Brien,et al. Witnessing eigenstates for quantum simulation of Hamiltonian spectra , 2016, Science Advances.
[52] Daniel A. Lidar,et al. Quantum annealing of the p -spin model under inhomogeneous transverse field driving , 2018, Physical Review A.
[53] H. Nishimori,et al. Exponential Speedup of Quantum Annealing by Inhomogeneous Driving of the Transverse Field , 2018, 1801.02005.
[54] Daniel A. Lidar,et al. Dynamics of reverse annealing for the fully connected p -spin model , 2018, Physical Review A.
[55] Takeshi Yamazaki,et al. Towards the Practical Application of Near-Term Quantum Computers in Quantum Chemistry Simulations: A Problem Decomposition Approach , 2018, ArXiv.
[56] W. Hager,et al. and s , 2019, Shallow Water Hydraulics.
[57] Tsuyoshi Murata,et al. {m , 1934, ACML.