Analysis of pattern precision shows that Drosophila segmentation develops substantial independence from gradients of maternal gene products

We analyze the relation between maternal gradients and segmentation in Drosophila, by quantifying spatial precision in protein patterns. Segmentation is first seen in the striped expression patterns of the pair‐rule genes, such as even‐skipped (eve). We compare positional precision between Eve and the maternal gradients of Bicoid (Bcd) and Caudal (Cad) proteins, showing that Eve position could be initially specified by the maternal protein concentrations but that these do not have the precision to specify the mature striped pattern of Eve. By using spatial trends, we avoid possible complications in measuring single boundary precision (e.g., gap gene patterns) and can follow how precision changes in time. During nuclear cleavage cycles 13 and 14, we find that Eve becomes increasingly correlated with egg length, whereas Bcd does not. This finding suggests that the change in precision is part of a separation of segmentation from an absolute spatial measure, established by the maternal gradients, to one precise in relative (percent egg length) units. Developmental Dynamics 235:2949–2960, 2006. © 2006 Wiley‐Liss, Inc.

[1]  The Initiation , 2007, Witchfinders.

[2]  S. Small,et al.  Morphogens: Precise Outputs from a Variable Gradient , 2006, Current Biology.

[3]  S. Leibler,et al.  Precise domain specification in the developing Drosophila embryo. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  W. Bialek,et al.  Diffusion and scaling during early embryonic pattern formation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. R. ten Wolde,et al.  Finding the center reliably: robust patterns of developmental gene expression. , 2005, Physical review letters.

[6]  N. Dostatni,et al.  Bicoid Determines Sharp and Precise Target Gene Expression in the Drosophila Embryo , 2005, Current Biology.

[7]  J. Ferrell,et al.  Interlinked Fast and Slow Positive Feedback Loops Drive Reliable Cell Decisions , 2005, Science.

[8]  C. Pesce,et al.  Regulated cell-to-cell variation in a cell-fate decision system , 2005, Nature.

[9]  Qing Nie,et al.  Formation of the BMP activity gradient in the Drosophila embryo. , 2005, Developmental cell.

[10]  Rustem F. Ismagilov,et al.  Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics , 2005, Nature.

[11]  Johannes Jaeger,et al.  A high-throughput method for quantifying gene expression data from early Drosophila embryos , 2005, Development Genes and Evolution.

[12]  John Reinitz,et al.  Removal of background signal from in situ data on the expression of segmentation genes in Drosophila , 2005, Development Genes and Evolution.

[13]  T. Bisseling,et al.  Model for the robust establishment of precise proportions in the early Drosophila embryo. , 2004, Journal of theoretical biology.

[14]  H. Vöchting Ueber Theilbarkeit im Pflanzenreich und die Wirkung innerer und äusserer Kräfte auf Organbildung an Pflanzentheilen , 1877, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[15]  John Reinitz,et al.  A database for management of gene expression data in situ , 2004, Bioinform..

[16]  David H. Sharp,et al.  Dynamical Analysis of Regulatory Interactions in the Gap Gene System of Drosophila melanogaster , 2004, Genetics.

[17]  David H. Sharp,et al.  Dynamic control of positional information in the early Drosophila embryo , 2004, Nature.

[18]  A. E. Hirsh,et al.  Noise Minimization in Eukaryotic Gene Expression , 2004, PLoS biology.

[19]  J. Paulsson Summing up the noise in gene networks , 2004, Nature.

[20]  Daniel St Johnston,et al.  Seeing Is Believing The Bicoid Morphogen Gradient Matures , 2004, Cell.

[21]  K. Sander Of gradients and genes: Developmental concepts of Theodor Boveri and his students , 1994, Roux's archives of developmental biology.

[22]  H. Meinhardt,et al.  A theory of biological pattern formation , 1972, Kybernetik.

[23]  Dmitri Papatsenko,et al.  A self-organizing system of repressor gradients establishes segmental complexity in Drosophila , 2003, Nature.

[24]  Naama Barkai,et al.  Self-enhanced ligand degradation underlies robustness of morphogen gradients. , 2003, Developmental cell.

[25]  David M. Holloway,et al.  Noise in the segmentation gene network of Drosophila with implications for mechanisms of body axis specification , 2003, SPIE International Symposium on Fluctuations and Noise.

[26]  Mads Kærn,et al.  Noise in eukaryotic gene expression , 2003, Nature.

[27]  Andrew D Rutenberg,et al.  Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. , 2003, Physical review letters.

[28]  David M. Holloway,et al.  Making the body plan: Precision in the genetic hierarchy of Drosophila embryo segmentation , 2003, Silico Biol..

[29]  David M. Holloway,et al.  Evolutionary Techniques for Image Processing a Large Dataset of Early Drosophila Gene Expression , 2003, EURASIP J. Adv. Signal Process..

[30]  Alexander V. Spirov,et al.  Reconstruction of the Dynamics of Drosophila Genes Expression from Sets of Images Sharing a Common Pattern , 2002, Real Time Imaging.

[31]  N. Barkai,et al.  Robustness of the BMP morphogen gradient in Drosophila embryonic patterning , 2022 .

[32]  Andrew L. Rukhin,et al.  Analysis of Time Series Structure SSA and Related Techniques , 2002, Technometrics.

[33]  M. Thattai,et al.  Attenuation of noise in ultrasensitive signaling cascades. , 2002, Biophysical journal.

[34]  S. Leibler,et al.  Establishment of developmental precision and proportions in the early Drosophila embryo , 2002, Nature.

[35]  H. Krause,et al.  Anterior-posterior patterning in the Drosophila embryo , 2002 .

[36]  John Reinitz,et al.  Registration of the expression patterns of Drosophila segmentation genes by two independent methods , 2001, Bioinform..

[37]  M. Ehrenberg,et al.  Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  L. Serrano,et al.  Engineering stability in gene networks by autoregulation , 2000, Nature.

[39]  G. K. Davis,et al.  The origin and evolution of segmentation. , 1999, Trends in cell biology.

[40]  M. Fujioka,et al.  Analysis of an even-skipped rescue transgene reveals both composite and discrete neuronal and early blastoderm enhancers, and multi-stripe positioning by gap gene repressor gradients. , 1999, Development.

[41]  L. G. Harrison,et al.  Suppression of positional errors in biological development. , 1999, Mathematical biosciences.

[42]  J. Reinitz,et al.  Rapid preparation of a panel of polyclonal antibodies to Drosophila segmentation proteins , 1998, Development Genes and Evolution.

[43]  D Kosman,et al.  Automated assay of gene expression at cellular resolution. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[44]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[45]  Lewis Wolpert,et al.  Principles of Development , 1997 .

[46]  H. Jäckle,et al.  From gradients to stripes in Drosophila embryogenesis: filling in the gaps. , 1996, Trends in genetics : TIG.

[47]  L Wolpert,et al.  One hundred years of positional information. , 1996, Trends in genetics : TIG.

[48]  M. Levine,et al.  The eve stripe 2 enhancer employs multiple modes of transcriptional synergy. , 1996, Development.

[49]  M. Fujioka,et al.  Early even-skipped stripes act as morphogenetic gradients at the single cell level to establish engrailed expression. , 1995, Development.

[50]  Norbert Perrimon,et al.  Activation of posterior gap gene expression in the Drosophila blastoderm , 1995, Nature.

[51]  D. Tautz,et al.  Zygotic caudal regulation by hunchback and its role in abdominal segment formation of the Drosophila embryo. , 1995, Development.

[52]  L. Pick,et al.  Non-periodic cues generate seven ftz stripes in the Drosophila embryo , 1995, Mechanisms of Development.

[53]  L G Harrison,et al.  Kinetic theory of living pattern. , 1994, Endeavour.

[54]  M. Levine,et al.  Regulation of even‐skipped stripe 2 in the Drosophila embryo. , 1992, The EMBO journal.

[55]  M. Levine,et al.  Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. , 1991, Science.

[56]  M. Levine,et al.  The initiation of pair-rule stripes in the Drosophila blastoderm. , 1991, Current opinion in genetics & development.

[57]  K. Struhl,et al.  The gradient morphogen bicoid is a concentration-dependent transcriptional activator , 1989, Cell.

[58]  C. Nüsslein-Volhard,et al.  A gradient of bicoid protein in Drosophila embryos , 1988, Cell.

[59]  C. Nüsslein-Volhard,et al.  The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner , 1988, Cell.

[60]  B. Alberts,et al.  Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. , 1983, Journal of cell science.

[61]  J. Oppenheimer Gradients and genes , 1978, Behavioral and Brain Sciences.

[62]  M. Savageau Comparison of classical and autogenous systems of regulation in inducible operons , 1974, Nature.

[63]  F. Crick Diffusion in Embryogenesis , 1970, Nature.

[64]  L. Wolpert Positional information and the spatial pattern of cellular differentiation. , 1969, Journal of theoretical biology.

[65]  Theodor Boveri Die Potenzen der Ascaris-Blastomeren bei abgeänderter Furchung : Zugleich ein Beitrag zur Frage qualitativ-ungleicher Chremosomen-Teilung , 1910 .

[66]  Theodor Boveri Ergebnisse über die Konstitution der chromatischen Substanz des Zellkerns , 1904 .

[67]  W. Bateson Materials for the Study of Variation: Treated with Especial Regard to Discontinuity in the Origin of Species , 1894 .