PRICKLE1 gene methylation and abnormal transcription in Chinese patients with ankylosing spondylitis.

[1]  Shiyang Guan,et al.  Ankylosing Spondylitis Patients Display Aberrant ERAP1 Gene DNA Methylation and Expression , 2021, Immunological investigations.

[2]  J. Kunz,et al.  Understanding the Pathogenesis of Spondyloarthritis , 2020, Biomolecules.

[3]  M. Konopleva,et al.  Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges. , 2020, Cancer discovery.

[4]  Kyungdo Han,et al.  Impact of ankylosing spondylitis on depression: a nationwide cohort study , 2019, Scientific Reports.

[5]  Jian-hua Xu,et al.  Ankylosing spondylitis is associated with aberrant DNA methylation of IFN regulatory factor 8 gene promoter region , 2019, Clinical Rheumatology.

[6]  Y. Wan,et al.  Prickle1 regulates differentiation of frontal bone osteoblasts , 2018, Scientific Reports.

[7]  Jianru Wang,et al.  Inflammation Intensity–Dependent Expression of Osteoinductive Wnt Proteins Is Critical for Ectopic New Bone Formation in Ankylosing Spondylitis , 2018, Arthritis & rheumatology.

[8]  L. Criswell,et al.  Hypomethylation of CYP2E1 and DUSP22 Promoters Associated With Disease Activity and Erosive Disease Among Rheumatoid Arthritis Patients , 2018, Arthritis & rheumatology.

[9]  M. Mahmoudi,et al.  Promoter hypermethylation of BCL11B gene correlates with downregulation of gene transcription in ankylosing spondylitis patients , 2017, Genes and Immunity.

[10]  M. Brown,et al.  Genetics and the Causes of Ankylosing Spondylitis. , 2017, Rheumatic diseases clinics of North America.

[11]  Xiong Guo,et al.  Genome-wide DNA methylation profile analysis identifies differentially methylated loci associated with ankylosis spondylitis , 2017, Arthritis Research & Therapy.

[12]  Shicheng Guo,et al.  Genome-wide DNA methylation patterns in CD4+ T cells from Chinese Han patients with rheumatoid arthritis , 2017, Modern rheumatology.

[13]  J. F. Liu,et al.  The effect of celecoxib on DNA methylation of CDH13, TFPI2, and FSTL1 in squamous cell carcinoma of the esophagus in vivo , 2016, Anti-cancer drugs.

[14]  M. Garshasbi,et al.  Evaluation of DNMT1 gene expression profile and methylation of its promoter region in patients with ankylosing spondylitis , 2016, Clinical Rheumatology.

[15]  F. Bertucci,et al.  PRICKLE1 Contributes to Cancer Cell Dissemination through Its Interaction with mTORC2. , 2016, Developmental cell.

[16]  Yucong Zou,et al.  Downregulation of dickkopf-1 enhances the proliferation and osteogenic potential of fibroblasts isolated from ankylosing spondylitis patients via the Wnt/β-catenin signaling pathway in vitro , 2016, Connective tissue research.

[17]  Q. Lu,et al.  Epigenetic dynamics in immunity and autoimmunity. , 2015, The international journal of biochemistry & cell biology.

[18]  J. Goodacre,et al.  The impact of ankylosing spondylitis/axial spondyloarthritis on work productivity. , 2015, Best practice & research. Clinical rheumatology.

[19]  Ming-Chi Lu,et al.  Association between cytokines and methylation of SOCS-1 in serum of patients with ankylosing spondylitis , 2014, Molecular Biology Reports.

[20]  A. Kozubík,et al.  The planar cell polarity pathway drives pathogenesis of chronic lymphocytic leukemia by the regulation of B-lymphocyte migration. , 2013, Cancer research.

[21]  Hans Clevers,et al.  Wnt/β-Catenin Signaling and Disease , 2012, Cell.

[22]  J. Pers,et al.  Epigenetics and autoimmunity. , 2010, Journal of autoimmunity.

[23]  J. Zwerina,et al.  Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. , 2009, Arthritis and rheumatism.

[24]  Mark L. Johnson,et al.  The Wnt signaling pathway and bone metabolism , 2007, Current opinion in rheumatology.

[25]  R. Baron,et al.  Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. , 2007, Endocrinology.

[26]  M. Dougados,et al.  Serum matrix metalloproteinase 3 is an independent predictor of structural damage progression in patients with ankylosing spondylitis. , 2007, Arthritis and rheumatism.

[27]  J. Braun,et al.  Ankylosing spondylitis , 2007, The Lancet.

[28]  Steven R Goldring,et al.  Eating bone or adding it: the Wnt pathway decides , 2007, Nature Medicine.

[29]  Georg Schett,et al.  Dickkopf-1 is a master regulator of joint remodeling , 2007, Nature Medicine.

[30]  B. Komm,et al.  Wnt signaling and osteoblastogenesis , 2007, Reviews in Endocrine and Metabolic Disorders.

[31]  A. Boonen,et al.  Identification of the most common problems by patients with ankylosing spondylitis using the international classification of functioning, disability and health. , 2006, The Journal of rheumatology.

[32]  O. MacDougald,et al.  Regulation of bone mass by Wnt signaling. , 2006, The Journal of clinical investigation.

[33]  H. Bodur,et al.  Functional disability and quality of life in patients with ankylosing spondylitis , 2003, Rheumatology International.

[34]  Jürgen Braun,et al.  Age at disease onset and diagnosis delay in HLA-B27 negative vs. positive patients with ankylosing spondylitis , 2003, Rheumatology International.

[35]  P Wordsworth,et al.  Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. , 1997, Arthritis and rheumatism.

[36]  R D Sturrock,et al.  Ankylosing spondylitis and HL-A 27. , 1973, Lancet.

[37]  Wei Chen,et al.  Wnt and the Wnt signaling pathway in bone development and disease. , 2014, Frontiers in bioscience.

[38]  J. Kitagaki,et al.  Activation of beta-catenin-LEF/TCF signal pathway in chondrocytes stimulates ectopic endochondral ossification. , 2003, Osteoarthritis and cartilage.