A computational framework to investigate charge transport in heterogeneous organic photovoltaic devices

Abstract Low cost per watt and mechanical flexibility of organic solar cells (OSCs) make it a promising alternative to traditional inorganic solar cells. Recently, conjugated polymer based organic solar cells with efficiency of 8.13% [1] have been reported. Experimental results suggest that the distribution of the donor and acceptor constituents in the morphology is a key factor in determining the efficiency of such devices. A computational framework that can effectively explore that correlation between morphology and performance would greatly accelerate the development of high efficiency organic photovoltaic devices. In this paper, we develop a scalable computational framework to understand the correlation between nanoscale morphology and performance of OSC. We focus on the charge transport mechanism while considering one-stage interfacial charge generation process. Steady state drift–diffusion equations are used for modeling these devices. We discuss the numerical challenges associated with a finite element based simulation of OSC with spatial variation in material properties and large charge density gradients. The effect of microstructure on the distribution of charge densities and electrostatic potential is investigated. The prominent effect of feature size and interface area on the current–voltage characteristics is illustrated using realistic microstructures. We showcase the framework by interrogating fully 3D heterogeneous microstructures.

[1]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[2]  A. Walker,et al.  Simulation of loss mechanisms in organic solar cells: A description of the mesoscopic Monte Carlo technique and an evaluation of the first reaction method. , 2010, The Journal of chemical physics.

[3]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[4]  S. Selberherr Analytical Investigations About the Basic Semiconductor Equations , 1984 .

[5]  P. Heremans,et al.  Organic tandem solar cells with complementary absorbing layers and a high open-circuit voltage , 2010 .

[6]  H. Bässler,et al.  Hopping approach towards exciton dissociation in conjugated polymers. , 2008, The Journal of chemical physics.

[7]  Franco Brezzi,et al.  Numerical simulation of semiconductor devices , 1989 .

[8]  Mm Martijn Wienk,et al.  Electron Transport in a Methanofullerene , 2003 .

[9]  C. Adachi,et al.  Organic molecules based on dithienyl-2,1,3-benzothiadiazole as new donor materials for solution-processed organic photovoltaic cells , 2010 .

[10]  Nigel Clarke,et al.  Predicting structure and property relations in polymeric photovoltaic devices , 2006 .

[11]  M. Lundstrom,et al.  The drift-diffusion equation revisited , 1998 .

[12]  N. S. Sariciftci,et al.  Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials. , 2005, Physical review letters.

[13]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[14]  A. Walker,et al.  Dynamical Monte Carlo modelling of organic solar cells: the dependence of internal quantum efficiency on morphology. , 2005, Nano letters.

[15]  A. Amato,et al.  Muon location and muon dynamics in DyNi5 , 2003 .

[16]  Posternak Michel,et al.  板チタン石型TiO 2 のWanier関数とBorn電荷テンソル , 2006 .

[17]  Daniel Moses,et al.  Photoinduced Carrier Generation in P3HT/PCBM Bulk Heterojunction Materials , 2008 .

[18]  Yongfang Li,et al.  Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells. , 2010, Journal of the American Chemical Society.

[19]  J. Szmytkowski Modeling the electrical characteristics of P3HT:PCBM bulk heterojunction solar cells: Implementing the interface recombination , 2009 .

[20]  Guillermo C Bazan,et al.  "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. , 2009, Accounts of chemical research.

[21]  Valentin D. Mihailetchi,et al.  Device model for the operation of polymer/fullerene bulk heterojunction solar cells , 2005 .

[22]  Paul Heremans,et al.  P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics , 2006 .

[23]  R. Friend,et al.  Influence of Nanoscale Phase Separation on the Charge Generation Dynamics and Photovoltaic Performance of Conjugated Polymer Blends: Balancing Charge Generation and Separation , 2007 .

[24]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[25]  Venkat Ganesan,et al.  Correlations between Morphologies and Photovoltaic Properties of Rod−Coil Block Copolymers , 2010 .

[26]  Amy M. Ballantyne,et al.  Effects of thickness and thermal annealing of the PEDOT:PSS layer on the performance of polymer solar cells , 2009 .

[27]  Victor M. Burlakov,et al.  A numerical model for explaining the role of the interface morphology in composite solar cells , 2007 .

[28]  P. Stallinga Two‐Terminal Devices: DC Current , 2009 .

[29]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[30]  Graham F. Carey,et al.  Semiconductor device simulation using adaptive refinement and flux upwinding , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[31]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[32]  Valentin D. Mihailetchi,et al.  Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells , 2006 .

[33]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[34]  Baskar Ganapathysubramanian,et al.  Computer simulation of heterogeneous polymer photovoltaic devices , 2012 .

[35]  Gang Li,et al.  Control of the nanoscale crystallinity and phase separation in polymer solar cells , 2008 .

[36]  Vladimir Dyakonov,et al.  Organic Bulk-Heterojunction Solar Cells , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[37]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[38]  Alex K.-Y. Jen,et al.  Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes , 2009 .

[39]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.

[40]  Niyazi Serdar Sariciftci,et al.  Morphology of polymer/fullerene bulk heterojunction solar cells , 2006 .

[41]  Neil C. Greenham,et al.  Modeling the current-voltage characteristics of bilayer polymer photovoltaic devices , 2003 .

[42]  Jae Kwan Lee,et al.  "Columnlike" structure of the cross-sectional morphology of bulk heterojunction materials. , 2009, Nano letters.

[43]  Y. Xi,et al.  Tuning the absorption, charge transport properties, and solar cell efficiency with the number of thienyl rings in platinum-containing poly(aryleneethynylene)s. , 2007, Journal of the American Chemical Society.

[44]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[45]  Randolph E. Bank,et al.  The Finite Volume Scharfetter-Gummel method for steady convection diffusion equations , 1998 .

[46]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[47]  N. Greenham,et al.  Monte Carlo modeling of geminate recombination in polymer-polymer photovoltaic devices. , 2008, The Journal of chemical physics.

[48]  Jonny Williams,et al.  Two-dimensional simulations of bulk heterojunction solar cell characteristics. , 2008, Nanotechnology.

[49]  Ludmil T. Zikatanov,et al.  An exponential fitting scheme for general convection-diffusion equations on tetrahedral meshes , 2012, 1211.0869.

[50]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[51]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[52]  Neil C. Greenham,et al.  A microscopic model for the behavior of nanostructured organic photovoltaic devices , 2007 .

[53]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[54]  Charles L. Braun,et al.  Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production , 1984 .

[55]  D. Ginger,et al.  Heterogeneity in polymer solar cells: local morphology and performance in organic photovoltaics studied with scanning probe microscopy. , 2010, Accounts of chemical research.

[56]  Olga Wodo,et al.  Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem , 2011, J. Comput. Phys..

[57]  Byung-Kwan Yu,et al.  Time‐Dependent Morphology Evolution by Annealing Processes on Polymer:Fullerene Blend Solar Cells , 2009 .

[58]  Valentin D. Mihailetchi,et al.  Hole Transport in Poly(phenylene vinylene)/Methanofullerene Bulk‐Heterojunction Solar Cells , 2004 .

[59]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.