Measurement background and the sediment age-dating reach of 32Si

[1]  M. Sturm,et al.  32Si dating of sediments from Lake Baikal , 2013, Journal of Paleolimnology.

[2]  C. Aalseth,et al.  The design, construction, and initial characterization of an ultra-low-background gas-proportional counting system , 2013, Journal of Radioanalytical and Nuclear Chemistry.

[3]  J. Fast,et al.  A shallow underground laboratory for low-background radiation measurements and materials development. , 2012, The Review of scientific instruments.

[4]  Jill M. Brandenberger,et al.  Pyrogenic inputs of anthropogenic Pb and Hg to sediments of the Hood Canal, Washington, in the 20th century: source evidence from stable Pb isotopes and PAH signatures. , 2012, Environmental science & technology.

[5]  Chaoli Li,et al.  32Si AMS measurement with ΔE-Q3D method , 2011 .

[6]  Jill M. Brandenberger,et al.  Natural and Post-Urbanization Signatures of Hypoxia in Two Basins of Puget Sound: Historical Reconstruction of Redox Sensitive Metals and Organic Matter Inputs , 2011 .

[7]  Jill M. Brandenberger,et al.  Combustion-derived substances in deep basins of Puget Sound: historical inputs from fossil fuel and biomass combustion. , 2011, Environmental pollution.

[8]  L. Fifield,et al.  Silicon-32 as a tool for dating the recent past , 2009 .

[9]  Glen A. Warren,et al.  Design and construction of a low-background, internal-source proportional counter , 2009 .

[10]  Jill M. Brandenberger,et al.  Historical inputs and natural recovery rates for heavy metals and organic biomarkers in Puget Sound during the 20th century. , 2008, Environmental science & technology.

[11]  C. Aalseth,et al.  Cleaning and passivation of copper surfaces to remove surface radioactivity and prevent oxide formation , 2007 .

[12]  L. Coppola,et al.  Fractionation of surface sediment fines based on a coupled sieve-SPLITT (split flow thin cell) method. , 2005, Water research.

[13]  A. Lücke,et al.  A new method for the quantitative separation of diatom frustules from lake sediments , 2004 .

[14]  L. K. Fifield,et al.  New frontiers in glacier ice dating: Measurement of natural 32Si by AMS , 2000 .

[15]  H. Craig,et al.  Paradox lost: silicon 32 and the global ocean silica cycle , 2000 .

[16]  I. Renberg,et al.  The half-life of 32Si: a new estimate based on varved lake sediments , 1998 .

[17]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. , 1993 .

[18]  D. DeMaster,et al.  Particle mixing rates in deep-sea sediments determined from excess 210Pb and 32Si profiles , 1982 .

[19]  M. Meybeck,et al.  Geochronology of lake sediments , 1971 .

[20]  L. A. Currie,et al.  LIMITS FOR QUALITATIVE DETECTION AND QUANTITATIVE DETERMINATION. APPLICATION TO RADIOCHEMISTRY. , 1968 .

[21]  D. Lal,et al.  ‘Dating’ Ground Waters of Ages Younger than 1,000–1,500 Years Using Natural Silicon-32 , 1966, Nature.

[22]  Christina Kluge,et al.  Data Reduction And Error Analysis For The Physical Sciences , 2016 .

[23]  I. Graham,et al.  32Si Dating of Marine Sediments from Bangladesh , 2001, Radiocarbon.

[24]  K. Fröhlich,et al.  Preparation of Water Samples for 32Si Determinations , 1988 .

[25]  K. Turekian,et al.  Comparison of sedimentation rates obtained by32Si and uranium decay series determinations in some siliceous Antarctic cores , 1969 .

[26]  D. Lal,et al.  COSMIC RAY PRODUCED RADIOACTIVITY ON THE EARTH. , 1967 .