scSLAM-seq reveals core features of transcription dynamics in single cells

[1]  Jeremy A. Schofield,et al.  Expanding the Nucleoside Recoding Toolkit: Revealing RNA Population Dynamics with 6-Thioguanosine. , 2018, Journal of the American Chemical Society.

[2]  Yi Zhang,et al.  Two-phase differential expression analysis for single cell RNA-seq , 2018, Bioinform..

[3]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[4]  Christopher J. Cronin,et al.  Dynamics and Spatial Genomics of the Nascent Transcriptome by Intron seqFISH , 2018, Cell.

[5]  Tim De Meyer,et al.  Analysis of DNA methylation in cancer: location revisited , 2018, Nature Reviews Clinical Oncology.

[6]  Florian Erhard,et al.  Dissecting newly transcribed and old RNA using GRAND-SLAM , 2018, Bioinform..

[7]  Jesse J. Lipp,et al.  SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis , 2018, Science.

[8]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[9]  Meaghan C. Sullivan,et al.  TimeLapse-seq: Adding a temporal dimension to RNA sequencing through nucleoside recoding , 2018, Nature Methods.

[10]  Andrew E. Teschendorff,et al.  Statistical and integrative system-level analysis of DNA methylation data , 2017, Nature Reviews Genetics.

[11]  Johannes Zuber,et al.  Thiol-linked alkylation of RNA to assess expression dynamics , 2017, Nature Methods.

[12]  R. Satija,et al.  Single-cell RNA sequencing to explore immune cell heterogeneity , 2017, Nature Reviews Immunology.

[13]  Michael Q. Zhang,et al.  Reconstructing cell cycle pseudo time-series via single-cell transcriptome data , 2017, Nature Communications.

[14]  Thomas M. Norman,et al.  A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response , 2016, Cell.

[15]  Thomas M. Norman,et al.  Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens , 2016, Cell.

[16]  A. Regev,et al.  Revealing the vectors of cellular identity with single-cell genomics , 2016, Nature Biotechnology.

[17]  Aafke A. van den Berg,et al.  Crowding-induced transcriptional bursts dictate polymerase and nucleosome density profiles along genes , 2016, bioRxiv.

[18]  Christophe Zimmer,et al.  A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting , 2016, Nature Communications.

[19]  C. Benedict,et al.  cGAS-STING Signaling Regulates Initial Innate Control of Cytomegalovirus Infection , 2016, Journal of Virology.

[20]  R. Sandberg,et al.  Random monoallelic expression of autosomal genes: stochastic transcription and allele-level regulation , 2015, Nature Reviews Genetics.

[21]  Joseph L. Herman,et al.  Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis , 2015, Nature Methods.

[22]  Felix Naef,et al.  Structure of silent transcription intervals and noise characteristics of mammalian genes , 2015, Molecular systems biology.

[23]  Jason D. Buenrostro,et al.  Transient Acquisition of Pluripotency During Somatic Cell Transdifferentiation with iPSC Reprogramming Factors , 2015, Nature Biotechnology.

[24]  R. Shamir,et al.  ElemeNT: a computational tool for detecting core promoter elements , 2015, Transcription.

[25]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[26]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[27]  L. Dölken,et al.  Murine Cytomegalovirus Virion-Associated Protein M45 Mediates Rapid NF-κB Activation after Infection , 2014, Journal of Virology.

[28]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[29]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[30]  Cole Trapnell,et al.  Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions , 2014, Nature Biotechnology.

[31]  Aleksandra A. Kolodziejczyk,et al.  Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.

[32]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013, Nature Methods.

[33]  Rona S. Gertner,et al.  Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells , 2013, Nature.

[34]  Mikhail Pachkov,et al.  SwissRegulon, a database of genome-wide annotations of regulatory sites: recent updates , 2012, Nucleic Acids Res..

[35]  Thomas Bonfert,et al.  Real-time Transcriptional Profiling of Cellular and Viral Gene Expression during Lytic Cytomegalovirus Infection , 2012, PLoS pathogens.

[36]  Peter A. Jones Functions of DNA methylation: islands, start sites, gene bodies and beyond , 2012, Nature Reviews Genetics.

[37]  Thomas Höfer,et al.  Multi-layered stochasticity and paracrine signal propagation shape the type-I interferon response , 2012, Molecular systems biology.

[38]  S. Kaufmann,et al.  Ultrashort and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution , 2012, Genome research.

[39]  A. van Oudenaarden,et al.  Using Gene Expression Noise to Understand Gene Regulation , 2012, Science.

[40]  I. Mohr,et al.  Transient Reversal of Episome Silencing Precedes VP16-Dependent Transcription during Reactivation of Latent HSV-1 in Neurons , 2012, PLoS pathogens.

[41]  B. Roizman,et al.  HSV-1 gene expression from reactivated ganglia is disordered and concurrent with suppression of latency-associated transcript and miRNAs , 2011, Proceedings of the National Academy of Sciences.

[42]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[43]  Achim Tresch,et al.  Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast , 2011, Molecular systems biology.

[44]  Carlos Bustamante,et al.  Nucleosomal Fluctuations Govern the Transcription Dynamics of RNA Polymerase II , 2009, Science.

[45]  Israel Steinfeld,et al.  BMC Bioinformatics BioMed Central , 2008 .

[46]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[47]  R. Zimmer,et al.  High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. , 2008, RNA.

[48]  D. Brutlag,et al.  A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[49]  T. Shenk,et al.  RNAs Are Packaged into Human Cytomegalovirus Virions in Proportion to Their Intracellular Concentration , 2004, Journal of Virology.

[50]  Vitaly Epshtein,et al.  Cooperation Between RNA Polymerase Molecules in Transcription Elongation , 2003, Science.

[51]  P. Khavari,et al.  Divergent gene regulation and growth effects by NF-κB in epithelial and mesenchymal cells of human skin , 2003, Oncogene.

[52]  T. Shenk,et al.  A subset of viral transcripts packaged within human cytomegalovirus particles. , 2000, Science.

[53]  Donald Macleod,et al.  A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA , 1985, Cell.

[54]  Extended data : Figures , 2020 .

[55]  R. Kalejta Functions of human cytomegalovirus tegument proteins prior to immediate early gene expression. , 2008, Current topics in microbiology and immunology.