HIGH-REDSHIFT METALS. II. PROBING REIONIZATION GALAXIES WITH LOW-IONIZATION ABSORPTION LINES AT REDSHIFT SIX

We present a survey for low-ionization metal absorption line systems toward 17 QSOs at redshifts z_(em) = 5.8-6.4. Nine of our objects were observed at high resolution with either Keck/HIRES or Magellan/MIKE, and the remainder at moderate resolution with Keck/ESI. The survey spans 5.3 5.3 in the number density of highly ionized systems traced by C IV. The low-ionization systems at z ~ 6 span a similar range of velocity widths as lower-redshift sub-DLAs but have significantly weaker lines at a given width. This may imply that the mass-metallicity relation of the host galaxies evolves toward lower metallicities at higher redshifts. These systems lack strong Si IV and C IV, which are common among lower-redshift DLAs and sub-DLAs. This is consistent, however, with a similar decrease in the metallicity of the low- and high-ionization phases, and does not necessarily indicate a lack of nearby, highly ionized gas. The high number density of low-ionization systems at z ~ 6 suggests that we may be detecting galaxies below the current limits of i-dropout and Lyα emission galaxy surveys. These systems may therefore be the first direct probes of the "typical" galaxies responsible for hydrogen reionization.

[1]  IoA,et al.  Intergalactic C iv absorption at redshifts 5.4 to 6 , 2006, astro-ph/0607029.

[2]  D. Kelson Optimal Techniques in Two‐dimensional Spectroscopy: Background Subtraction for the 21st Century , 2003, astro-ph/0303507.

[3]  P. Noterdaeme,et al.  Damped and sub-damped Lyman-α absorbers in z > 4 QSOs , 2009, 0909.4839.

[4]  Astrophysics,et al.  A downturn in intergalactic C iv as redshift 6 is approached , 2009, 0902.1991.

[5]  Metal Absorption Lines as Probes of the Intergalactic Medium Prior to the Reionization Epoch , 2002, astro-ph/0211496.

[6]  The Minimum Universal Metal Density between Redshifts of 1.5 and 5.5 , 2001, astro-ph/0110123.

[7]  R. Simcoe High-Redshift Intergalactic C IV Abundance Measurements from the Near-Infrared Spectra of Two z ~ 6 QSOs , 2006, astro-ph/0605710.

[8]  P. Peebles,et al.  STATISTICAL TESTS FOR THE ORIGIN OF ABSORPTION LINES OBSERVED IN QUASI- STELLAR SOURCES. , 1969 .

[9]  J. Prochaska Quasars Probing Quasars , 2006 .

[10]  W. Sargent,et al.  Discovery of Excess O I Absorption toward the z=6.42 QSO SDSS J1148+5251 , 2005, astro-ph/0511541.

[11]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[12]  J. Bolton,et al.  Near-zone sizes and the rest-frame extreme ultraviolet spectral index of the highest redshift quasars , 2010, 1008.1107.

[13]  Robert H. Becker,et al.  Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.

[14]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[15]  J. Prochaska,et al.  KECK ECHELLETTE SPECTROGRAPH AND IMAGER OBSERVATIONS OF METAL-POOR DAMPED Lyα SYSTEMS , 2010 .

[16]  R. Bouwens,et al.  z ∼ 7 GALAXIES IN THE HUDF: FIRST EPOCH WFC3/IR RESULTS , 2009, 0909.1806.

[17]  P. Madau,et al.  He ii ABSORPTION AND THE SAWTOOTH SPECTRUM OF THE COSMIC FAR-UV BACKGROUND , 2008, 0812.0824.

[18]  D. Schaerer The transition from Population III to normal galaxies: Lyα and He II emission and the ionising properties of high redshift starburst galaxies , 2002, astro-ph/0210462.

[19]  A homogeneous sample of sub-damped Lyman α systems — III. Total gas mass ΩH i+He ii at z > 2⋆ , 2005, astro-ph/0507353.

[20]  M. Asplund,et al.  The Evolution of the C/O Ratio in Metal-poor Halo Stars , 2003, astro-ph/0310472.

[21]  M. Viel,et al.  The rise of the C iv mass density at z < 2.5 , 2009, 0910.2126.

[22]  D. Turnshek,et al.  On the sizes of neutral hydrogen regions giving rise to damped Lyα absorption systems , 2009 .

[23]  K. Finlator,et al.  Tracing the re-ionization-epoch intergalactic medium with metal absorption lines , 2009, 0901.0286.

[24]  J. Prochaska,et al.  The Keck+Magellan Survey for Lyman Limit Absorption. I. The Frequency Distribution of Super Lyman Limit Systems , 2006, astro-ph/0610726.

[25]  Jason X. Prochaska,et al.  On the Kinematics of the Damped Lyman-α Protogalaxies , 1997, astro-ph/9704169.

[26]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[27]  J. Prochaska,et al.  THE KECK + MAGELLAN SURVEY FOR LYMAN LIMIT ABSORPTION. II. A CASE STUDY ON METALLICITY VARIATIONS , 2009, 0912.0293.

[28]  Taxing the rich: Recombinations and bubble growth during reionization , 2005, astro-ph/0505065.

[29]  G. Stinson,et al.  Damped Lyman α systems in galaxy formation simulations , 2008, 0804.4474.

[30]  A. Mesinger Was reionization complete by z∼ 5–6? , 2009, 0910.4161.

[31]  S. M. Fall,et al.  LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION , 2009, 0908.3191.

[32]  A. Cimatti,et al.  Optical-NIR spectra of quasars close to reionization (z̃ 6) , 2011, 1101.1948.

[33]  Characterizing the Warm-Hot IGM at High Redshift: A High Resolution Survey for O VI at z = 2.5 , 2002, astro-ph/0206497.

[34]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[35]  P. Noterdaeme,et al.  Evolution of the cosmological mass density of neutral gas from Sloan Digital Sky Survey II - Data Release 7 , 2009, 0908.1574.

[36]  W. Sargent,et al.  A first direct measurement of the intergalactic medium temperature around a quasar at z = 6 , 2010, 1001.3415.

[37]  L. Cowie,et al.  THE EVOLUTION OF LYMAN LIMIT ABSORPTION SYSTEMS TO REDSHIFT SIX , 2010, 1007.3262.

[38]  J. Prochaska,et al.  ON THE (NON)EVOLUTION OF H i GAS IN GALAXIES OVER COSMIC TIME , 2008, 0811.2003.

[39]  Celine Peroux,et al.  A Population of Faint Extended Line Emitters and the Host Galaxies of Optically Thick QSO Absorption Systems , 2007, 0711.1354.

[40]  V. Springel,et al.  Abundance of damped Lyman α absorbers in cosmological smoothed particle hydrodynamics simulations , 2004 .

[41]  J. Prochaska,et al.  Ionized Gas in Damped Lyα Protogalaxies. I. Model-independent Inferences from Kinematic Data , 2000, astro-ph/0009081.

[42]  N. Gnedin,et al.  Cosmic Reionization Redux , 2006, astro-ph/0603794.

[43]  V. Springel,et al.  Abundance of damped Lyman-alpha absorbers in cosmological SPH simulations , 2003, astro-ph/0302187.

[44]  Survey for Galaxies Associated with z ~ 3 Damped Lyα Systems. II. Galaxy-Absorber Correlation Functions , 2006, astro-ph/0607149.

[45]  Germany,et al.  Interpreting the transmission windows of distant quasars , 2009, 0902.4071.

[46]  A. Ferrara,et al.  Glimpsing through the high-redshift neutral hydrogen fog , 2007, 0706.1053.

[47]  H. Epps,et al.  ESI, a New Keck Observatory Echellette Spectrograph and Imager , 2002, astro-ph/0204297.

[48]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[49]  S. White,et al.  Simulating intergalactic medium reionization , 2003 .

[50]  Richard S. Ellis,et al.  Keck spectroscopy of faint 3 < z < 7 Lyman break galaxies – I. New constraints on cosmic reionization from the luminosity and redshift-dependent fraction of Lyman α emission , 2010, 1003.5244.

[51]  S. Oh,et al.  Probing the dark ages with metal absorption lines , 2002, astro-ph/0201517.

[52]  D. Weinberg,et al.  The Population of Damped Lyα and Lyman Limit Systems in the Cold Dark Matter Model , 1996, astro-ph/9609072.

[53]  P. Petitjean,et al.  C iv absorption in damped and sub-damped Lyman-alpha systems: Correlations with metallicity and implications for galactic winds at z~2-3 , 2007, 0707.4065.

[54]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[55]  B. Oppenheimer,et al.  Cosmological simulations of intergalactic medium enrichment from galactic outflows , 2006, astro-ph/0605651.

[56]  Damped Lyman alpha systems and galaxy formation models – I. The radial distribution of cold gas at high z , 2001 .

[57]  Stephen A. Shectman,et al.  Volume-phase holographic spectrograph for the Magellan telescopes , 2002, SPIE Optics + Photonics.

[58]  The Sources of intergalactic metals , 2005, astro-ph/0503001.

[59]  J. Rhoads,et al.  The GLARE Survey – II. Faint z≈ 6 Lyα line emitters in the HUDF , 2007, astro-ph/0701211.

[60]  Measurement of the spatial cross-correlation function of damped Lyα systems and lyman break galaxies , 2005, astro-ph/0511509.

[61]  U. Chicago,et al.  On the Nature of Velocity Fields in High-z Galaxies , 2007, astro-ph/0703701.

[62]  M. Franx,et al.  ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.

[63]  S. Borgani,et al.  Damped Lyman α systems in high‐resolution hydrodynamical simulations , 2009, 0904.3545.

[64]  UK.,et al.  A homogeneous sample of sub-damped Lyman α systems- I. Construction of the sample and chemical abundance measurements , 2003, astro-ph/0307049.

[65]  J. Prochaska,et al.  The SDSS Damped Lyα Survey: Data Release 3 , 2005, astro-ph/0508361.

[66]  Thomas G. Barnes,et al.  Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert , 2005 .

[67]  The Evolution of Optical Depth in the Lyα Forest: Evidence Against Reionization at z~6* , 2006, astro-ph/0607633.

[68]  Mark Lacy,et al.  The contribution of high-redshift galaxies to cosmic reionization: New results from deep WFC3 imaging of the Hubble Ultra Deep Field , 2009, 0909.2255.

[69]  J. Prochaska,et al.  Investigating the Metal Line Systems at z = 1.9 toward J2233−606 in the Hubble Deep Field South , 1998, astro-ph/9812296.

[70]  IoA,et al.  A homogeneous sample of sub-damped Lyman systems – IV. Global metallicity evolution , 2007, 0707.2697.

[71]  Alan Dressler,et al.  A Magellan IMACS Spectroscopic Search for Lyα-emitting Galaxies at Redshift 5.7 , 2008, 0802.2393.

[72]  C. Steidel,et al.  The Connection between Galaxies and Intergalactic Absorption Lines at Redshift 2 ≲ z ≲ 3* , 2005, astro-ph/0505122.

[73]  Melbourne.,et al.  Measurements of the UV background at 4.6 < z < 6.4 using the quasar proximity effect , 2010, 1011.5850.

[74]  S. Furlanetto,et al.  Have We Detected Patchy Reionization in Quasar Spectra? , 2005, astro-ph/0512427.

[75]  Explosive Yields of Massive Stars from Z = 0 to Z = Z? , 2004, astro-ph/0402625.

[76]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[77]  P. Moller,et al.  Velocity-metallicity correlation for high-z DLA galaxies: evidence of a mass-metallicity relation? , 2006 .

[78]  C. Steidel,et al.  C, N, O abundances in the most metal-poor damped Lyman alpha systems★ , 2007, 0712.1829.

[79]  James S. Bolton,et al.  The observed ionization rate of the intergalactic medium and the ionizing emissivity at z≥ 5: evidence for a photon-starved and extended epoch of reionization , 2007 .

[80]  Michael Rauch,et al.  Damped Lyα Absorber at High Redshift: Large Disks or Galactic Building Blocks? , 1998 .

[81]  J. Truran,et al.  The Ionizing Efficiency of the First Stars , 2003, astro-ph/0304388.

[82]  M. Franx,et al.  STAR FORMATION RATES AND STELLAR MASSES OF z = 7–8 GALAXIES FROM IRAC OBSERVATIONS OF THE WFC3/IR EARLY RELEASE SCIENCE AND THE HUDF FIELDS , 2009, 0911.1356.

[83]  M. Davis,et al.  The spatial extent of the z = 2. 04 absorber in the spectrum of PKS 0458-020 , 1989 .

[84]  W. Sargent,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 4/9/03 METALLICITY OF THE INTERGALACTIC MEDIUM USING PIXEL STATISTICS. II. THE DISTRIBUTION OF METALS AS TRACED BY CIV 1 , 2003 .

[85]  Martin J. Rees,et al.  Reionization of the Inhomogeneous Universe , 1998, astro-ph/9812306.

[86]  F. Walter,et al.  IONIZATION NEAR ZONES ASSOCIATED WITH QUASARS AT z ∼ 6 , 2010, 1003.0016.

[87]  B. Savage,et al.  The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .

[88]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[89]  C. Frenk,et al.  The halo mass function from the dark ages through the present day , 2006, astro-ph/0607150.

[90]  J. Schaye,et al.  The filling factor of intergalactic metals at redshift z= 3 , 2010, 1011.5502.

[91]  P. Capak,et al.  AN ATLAS OF z = 5.7 AND z = 6.5 Lyα EMITTERS, , 2010, 1009.1144.

[92]  Simulating IGM Reionization , 2003, astro-ph/0301293.

[93]  R. Sheth,et al.  Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes , 1999, astro-ph/9907024.

[94]  International Centre for Radio Astronomy Research,et al.  A newly discovered DLA and associated Lyα emission in the spectra of the gravitationally lensed quasar UM 673A,B , 2010, 1007.1409.