HIGH-REDSHIFT METALS. II. PROBING REIONIZATION GALAXIES WITH LOW-IONIZATION ABSORPTION LINES AT REDSHIFT SIX
暂无分享,去创建一个
George D. Becker | Michael Rauch | Caltech | W. Sargent | M. Rauch | G. Becker | Wallace L. W. Sargent | Alexander P. Calverley KICCIoA Cambridge | OCIW | Alexander P. Calverley
[1] IoA,et al. Intergalactic C iv absorption at redshifts 5.4 to 6 , 2006, astro-ph/0607029.
[2] D. Kelson. Optimal Techniques in Two‐dimensional Spectroscopy: Background Subtraction for the 21st Century , 2003, astro-ph/0303507.
[3] P. Noterdaeme,et al. Damped and sub-damped Lyman-α absorbers in z > 4 QSOs , 2009, 0909.4839.
[4] Astrophysics,et al. A downturn in intergalactic C iv as redshift 6 is approached , 2009, 0902.1991.
[5] Metal Absorption Lines as Probes of the Intergalactic Medium Prior to the Reionization Epoch , 2002, astro-ph/0211496.
[6] The Minimum Universal Metal Density between Redshifts of 1.5 and 5.5 , 2001, astro-ph/0110123.
[7] R. Simcoe. High-Redshift Intergalactic C IV Abundance Measurements from the Near-Infrared Spectra of Two z ~ 6 QSOs , 2006, astro-ph/0605710.
[8] P. Peebles,et al. STATISTICAL TESTS FOR THE ORIGIN OF ABSORPTION LINES OBSERVED IN QUASI- STELLAR SOURCES. , 1969 .
[9] J. Prochaska. Quasars Probing Quasars , 2006 .
[10] W. Sargent,et al. Discovery of Excess O I Absorption toward the z=6.42 QSO SDSS J1148+5251 , 2005, astro-ph/0511541.
[11] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[12] J. Bolton,et al. Near-zone sizes and the rest-frame extreme ultraviolet spectral index of the highest redshift quasars , 2010, 1008.1107.
[13] Robert H. Becker,et al. Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.
[14] R. Bouwens,et al. UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.
[15] J. Prochaska,et al. KECK ECHELLETTE SPECTROGRAPH AND IMAGER OBSERVATIONS OF METAL-POOR DAMPED Lyα SYSTEMS , 2010 .
[16] R. Bouwens,et al. z ∼ 7 GALAXIES IN THE HUDF: FIRST EPOCH WFC3/IR RESULTS , 2009, 0909.1806.
[17] P. Madau,et al. He ii ABSORPTION AND THE SAWTOOTH SPECTRUM OF THE COSMIC FAR-UV BACKGROUND , 2008, 0812.0824.
[18] D. Schaerer. The transition from Population III to normal galaxies: Lyα and He II emission and the ionising properties of high redshift starburst galaxies , 2002, astro-ph/0210462.
[19] A homogeneous sample of sub-damped Lyman α systems — III. Total gas mass ΩH i+He ii at z > 2⋆ , 2005, astro-ph/0507353.
[20] M. Asplund,et al. The Evolution of the C/O Ratio in Metal-poor Halo Stars , 2003, astro-ph/0310472.
[21] M. Viel,et al. The rise of the C iv mass density at z < 2.5 , 2009, 0910.2126.
[22] D. Turnshek,et al. On the sizes of neutral hydrogen regions giving rise to damped Lyα absorption systems , 2009 .
[23] K. Finlator,et al. Tracing the re-ionization-epoch intergalactic medium with metal absorption lines , 2009, 0901.0286.
[24] J. Prochaska,et al. The Keck+Magellan Survey for Lyman Limit Absorption. I. The Frequency Distribution of Super Lyman Limit Systems , 2006, astro-ph/0610726.
[25] Jason X. Prochaska,et al. On the Kinematics of the Damped Lyman-α Protogalaxies , 1997, astro-ph/9704169.
[26] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[27] J. Prochaska,et al. THE KECK + MAGELLAN SURVEY FOR LYMAN LIMIT ABSORPTION. II. A CASE STUDY ON METALLICITY VARIATIONS , 2009, 0912.0293.
[28] Taxing the rich: Recombinations and bubble growth during reionization , 2005, astro-ph/0505065.
[29] G. Stinson,et al. Damped Lyman α systems in galaxy formation simulations , 2008, 0804.4474.
[30] A. Mesinger. Was reionization complete by z∼ 5–6? , 2009, 0910.4161.
[31] S. M. Fall,et al. LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION , 2009, 0908.3191.
[32] A. Cimatti,et al. Optical-NIR spectra of quasars close to reionization (z̃ 6) , 2011, 1101.1948.
[33] Characterizing the Warm-Hot IGM at High Redshift: A High Resolution Survey for O VI at z = 2.5 , 2002, astro-ph/0206497.
[34] S. Woosley,et al. The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .
[35] P. Noterdaeme,et al. Evolution of the cosmological mass density of neutral gas from Sloan Digital Sky Survey II - Data Release 7 , 2009, 0908.1574.
[36] W. Sargent,et al. A first direct measurement of the intergalactic medium temperature around a quasar at z = 6 , 2010, 1001.3415.
[37] L. Cowie,et al. THE EVOLUTION OF LYMAN LIMIT ABSORPTION SYSTEMS TO REDSHIFT SIX , 2010, 1007.3262.
[38] J. Prochaska,et al. ON THE (NON)EVOLUTION OF H i GAS IN GALAXIES OVER COSMIC TIME , 2008, 0811.2003.
[39] Celine Peroux,et al. A Population of Faint Extended Line Emitters and the Host Galaxies of Optically Thick QSO Absorption Systems , 2007, 0711.1354.
[40] V. Springel,et al. Abundance of damped Lyman α absorbers in cosmological smoothed particle hydrodynamics simulations , 2004 .
[41] J. Prochaska,et al. Ionized Gas in Damped Lyα Protogalaxies. I. Model-independent Inferences from Kinematic Data , 2000, astro-ph/0009081.
[42] N. Gnedin,et al. Cosmic Reionization Redux , 2006, astro-ph/0603794.
[43] V. Springel,et al. Abundance of damped Lyman-alpha absorbers in cosmological SPH simulations , 2003, astro-ph/0302187.
[44] Survey for Galaxies Associated with z ~ 3 Damped Lyα Systems. II. Galaxy-Absorber Correlation Functions , 2006, astro-ph/0607149.
[45] Germany,et al. Interpreting the transmission windows of distant quasars , 2009, 0902.4071.
[46] A. Ferrara,et al. Glimpsing through the high-redshift neutral hydrogen fog , 2007, 0706.1053.
[47] H. Epps,et al. ESI, a New Keck Observatory Echellette Spectrograph and Imager , 2002, astro-ph/0204297.
[48] M. Asplund,et al. The chemical composition of the Sun , 2009, 0909.0948.
[49] S. White,et al. Simulating intergalactic medium reionization , 2003 .
[50] Richard S. Ellis,et al. Keck spectroscopy of faint 3 < z < 7 Lyman break galaxies – I. New constraints on cosmic reionization from the luminosity and redshift-dependent fraction of Lyman α emission , 2010, 1003.5244.
[51] S. Oh,et al. Probing the dark ages with metal absorption lines , 2002, astro-ph/0201517.
[52] D. Weinberg,et al. The Population of Damped Lyα and Lyman Limit Systems in the Cold Dark Matter Model , 1996, astro-ph/9609072.
[53] P. Petitjean,et al. C iv absorption in damped and sub-damped Lyman-alpha systems: Correlations with metallicity and implications for galactic winds at z~2-3 , 2007, 0707.4065.
[54] M. Couture,et al. HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.
[55] B. Oppenheimer,et al. Cosmological simulations of intergalactic medium enrichment from galactic outflows , 2006, astro-ph/0605651.
[56] Damped Lyman alpha systems and galaxy formation models – I. The radial distribution of cold gas at high z , 2001 .
[57] Stephen A. Shectman,et al. Volume-phase holographic spectrograph for the Magellan telescopes , 2002, SPIE Optics + Photonics.
[58] The Sources of intergalactic metals , 2005, astro-ph/0503001.
[59] J. Rhoads,et al. The GLARE Survey – II. Faint z≈ 6 Lyα line emitters in the HUDF , 2007, astro-ph/0701211.
[60] Measurement of the spatial cross-correlation function of damped Lyα systems and lyman break galaxies , 2005, astro-ph/0511509.
[61] U. Chicago,et al. On the Nature of Velocity Fields in High-z Galaxies , 2007, astro-ph/0703701.
[62] M. Franx,et al. ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.
[63] S. Borgani,et al. Damped Lyman α systems in high‐resolution hydrodynamical simulations , 2009, 0904.3545.
[64] UK.,et al. A homogeneous sample of sub-damped Lyman α systems- I. Construction of the sample and chemical abundance measurements , 2003, astro-ph/0307049.
[65] J. Prochaska,et al. The SDSS Damped Lyα Survey: Data Release 3 , 2005, astro-ph/0508361.
[66] Thomas G. Barnes,et al. Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert , 2005 .
[67] The Evolution of Optical Depth in the Lyα Forest: Evidence Against Reionization at z~6* , 2006, astro-ph/0607633.
[68] Mark Lacy,et al. The contribution of high-redshift galaxies to cosmic reionization: New results from deep WFC3 imaging of the Hubble Ultra Deep Field , 2009, 0909.2255.
[69] J. Prochaska,et al. Investigating the Metal Line Systems at z = 1.9 toward J2233−606 in the Hubble Deep Field South , 1998, astro-ph/9812296.
[70] IoA,et al. A homogeneous sample of sub-damped Lyman systems – IV. Global metallicity evolution , 2007, 0707.2697.
[71] Alan Dressler,et al. A Magellan IMACS Spectroscopic Search for Lyα-emitting Galaxies at Redshift 5.7 , 2008, 0802.2393.
[72] C. Steidel,et al. The Connection between Galaxies and Intergalactic Absorption Lines at Redshift 2 ≲ z ≲ 3* , 2005, astro-ph/0505122.
[73] Melbourne.,et al. Measurements of the UV background at 4.6 < z < 6.4 using the quasar proximity effect , 2010, 1011.5850.
[74] S. Furlanetto,et al. Have We Detected Patchy Reionization in Quasar Spectra? , 2005, astro-ph/0512427.
[75] Explosive Yields of Massive Stars from Z = 0 to Z = Z? , 2004, astro-ph/0402625.
[76] S. Okamura,et al. The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.
[77] P. Moller,et al. Velocity-metallicity correlation for high-z DLA galaxies: evidence of a mass-metallicity relation? , 2006 .
[78] C. Steidel,et al. C, N, O abundances in the most metal-poor damped Lyman alpha systems★ , 2007, 0712.1829.
[79] James S. Bolton,et al. The observed ionization rate of the intergalactic medium and the ionizing emissivity at z≥ 5: evidence for a photon-starved and extended epoch of reionization , 2007 .
[80] Michael Rauch,et al. Damped Lyα Absorber at High Redshift: Large Disks or Galactic Building Blocks? , 1998 .
[81] J. Truran,et al. The Ionizing Efficiency of the First Stars , 2003, astro-ph/0304388.
[82] M. Franx,et al. STAR FORMATION RATES AND STELLAR MASSES OF z = 7–8 GALAXIES FROM IRAC OBSERVATIONS OF THE WFC3/IR EARLY RELEASE SCIENCE AND THE HUDF FIELDS , 2009, 0911.1356.
[83] M. Davis,et al. The spatial extent of the z = 2. 04 absorber in the spectrum of PKS 0458-020 , 1989 .
[84] W. Sargent,et al. ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 4/9/03 METALLICITY OF THE INTERGALACTIC MEDIUM USING PIXEL STATISTICS. II. THE DISTRIBUTION OF METALS AS TRACED BY CIV 1 , 2003 .
[85] Martin J. Rees,et al. Reionization of the Inhomogeneous Universe , 1998, astro-ph/9812306.
[86] F. Walter,et al. IONIZATION NEAR ZONES ASSOCIATED WITH QUASARS AT z ∼ 6 , 2010, 1003.0016.
[87] B. Savage,et al. The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .
[88] K. Horne,et al. AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .
[89] C. Frenk,et al. The halo mass function from the dark ages through the present day , 2006, astro-ph/0607150.
[90] J. Schaye,et al. The filling factor of intergalactic metals at redshift z= 3 , 2010, 1011.5502.
[91] P. Capak,et al. AN ATLAS OF z = 5.7 AND z = 6.5 Lyα EMITTERS, , 2010, 1009.1144.
[92] Simulating IGM Reionization , 2003, astro-ph/0301293.
[93] R. Sheth,et al. Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes , 1999, astro-ph/9907024.
[94] International Centre for Radio Astronomy Research,et al. A newly discovered DLA and associated Lyα emission in the spectra of the gravitationally lensed quasar UM 673A,B , 2010, 1007.1409.