Transferability of species distribution models for the detection of an invasive alien bryophyte using imaging spectroscopy data

[1]  P. Pyšek,et al.  Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring , 2017, Front. Plant Sci..

[2]  Ben Somers,et al.  Optical trait indicators for remote sensing of plant species composition: Predictive power and seasonal variability , 2017 .

[3]  Sindy Sterckx,et al.  Atmospheric correction of APEX hyperspectral data , 2016 .

[4]  Chris Brown,et al.  Testing the discrimination and detection limits of WorldView-2 imagery on a challenging invasive plant target , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[5]  Adrien Michez,et al.  Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[6]  Thomas A. Groen,et al.  Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia , 2016 .

[7]  Duccio Rocchini,et al.  Will remote sensing shape the next generation of species distribution models? , 2015 .

[8]  Rubén G. Mateo,et al.  Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data , 2015 .

[9]  B. Laenen,et al.  What is the potential of spread in invasive bryophytes , 2015 .

[10]  Robert A. Boria,et al.  ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models , 2014 .

[11]  José M. C. Pereira,et al.  Optimal attributes for the object based detection of giant reed in riparian habitats: A comparative study between Airborne High Spatial Resolution and WorldView-2 imagery , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[12]  B. Bradley Remote detection of invasive plants: a review of spectral, textural and phenological approaches , 2014, Biological Invasions.

[13]  D. Moser,et al.  Little, but increasing evidence of impacts by alien bryophytes , 2014, Biological Invasions.

[14]  Robert P. Anderson,et al.  Making better Maxent models of species distributions: complexity, overfitting and evaluation , 2014 .

[15]  Dan L. Warren,et al.  Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern , 2014 .

[16]  Robert P. Anderson,et al.  Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes , 2013 .

[17]  Matthew J. Smith,et al.  Protected areas network is not adequate to protect a critically endangered East Africa Chelonian: Modelling distribution of pancake tortoise, Malacochersus tornieri under current and future climates , 2013, bioRxiv.

[18]  Matthew J. Smith,et al.  The Effects of Sampling Bias and Model Complexity on the Predictive Performance of MaxEnt Species Distribution Models , 2013, PloS one.

[19]  David C. Jones,et al.  Remote Distinction of A Noxious Weed (Musk Thistle: CarduusNutans) Using Airborne Hyperspectral Imagery and the Support Vector Machine Classifier , 2013, Remote. Sens..

[20]  Julian D. Olden,et al.  Assessing transferability of ecological models: an underappreciated aspect of statistical validation , 2012 .

[21]  Mathieu Marmion,et al.  Does the interpolation accuracy of species distribution models come at the expense of transferability , 2012 .

[22]  J. Brashares,et al.  The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models , 2012 .

[23]  R. Hijmans,et al.  Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. , 2012, Ecology.

[24]  V. Robinson,et al.  Multispectral detection of European frog-bit in the South Nation River using Quickbird imagery , 2012 .

[25]  Robert P. Anderson,et al.  Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent , 2011 .

[26]  W. Liu,et al.  Temporal transferability of wildlife habitat models: implications for habitat monitoring , 2011 .

[27]  M. Neteler,et al.  Benefits of hyperspectral remote sensing for tracking plant invasions , 2011 .

[28]  Dan L Warren,et al.  Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. , 2011, Ecological applications : a publication of the Ecological Society of America.

[29]  A. Peterson,et al.  Use of niche models in invasive species risk assessments , 2011, Biological Invasions.

[30]  Trevor Hastie,et al.  A statistical explanation of MaxEnt for ecologists , 2011 .

[31]  Gregory Asner,et al.  Applications of Remote Sensing to Alien Invasive Plant Studies , 2009, Sensors.

[32]  R. Real,et al.  Transferability of environmental favourability models in geographic space : The case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain , 2009 .

[33]  J. Elith,et al.  Species Distribution Models: Ecological Explanation and Prediction Across Space and Time , 2009 .

[34]  S. Ustin,et al.  The role of environmental context in mapping invasive plants with hyperspectral image data , 2008 .

[35]  M. Zappa,et al.  Are niche‐based species distribution models transferable in space? , 2006 .

[36]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[37]  K. Sykora,et al.  Decline of lichen-diversity in calcium-poor coastal dune vegetation since the 1970s, related to grass and moss encroachment , 2004 .

[38]  Miroslav Dudík,et al.  A maximum entropy approach to species distribution modeling , 2004, ICML.

[39]  P. Twomey Timing is important , 2001 .

[40]  K. Sykora,et al.  Vegetation succession and lichen diversity on dry coastal calciumpoor dunes and the impact of management experiments , 2000 .

[41]  Gail P. Anderson,et al.  MODTRAN4 radiative transfer modeling for atmospheric correction , 1999, Optics & Photonics.

[42]  F. Daniëls,et al.  Changes in a lichen-rich dry sand grassland vegetation with special reference to lichen synusiae and Campylopus introflexus , 1997 .

[43]  H. Lehman Statistical Explanation , 1972, Philosophy of Science.

[44]  P. Richards Campylopus introflexus (Hedw.) Brid. and C. polytrichoides De Not. in the British Isles; a preliminary account , 1963 .

[45]  Gregory Asner,et al.  Performance of one-class classifiers for invasive species mapping using airborne imaging spectroscopy , 2017, Ecol. Informatics.

[46]  J. Elith,et al.  Species distribution modeling with R , 2016 .

[47]  P. Ely,et al.  The location choice of graduate entrepreneurs in the United Kingdom , 2015 .

[48]  S. Schmidtlein,et al.  Mapping an invasive bryophyte species using hyperspectral remote sensing data , 2016, Biological Invasions.

[49]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[50]  Gregory Asner,et al.  Invasive Species Mapping in Hawaiian Rainforests Using Multi-Temporal Hyperion Spaceborne Imaging Spectroscopy , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[51]  C. S. Reddy,et al.  Species distribution models: ecological explanation and prediction of an endemic and endangered plant species (Pterocarpus santalinus L.f.) , 2012 .

[52]  Susan L. Ustin,et al.  Mapping an invasive species, kudzu (Pueraria montana), using hyperspectral imagery in western Georgia , 2007 .

[53]  P. Jungerius,et al.  UvA-DARE (Digital Academic Repository) Ecological effects of reactivation of artificially stabilized blowouts in coastal dunes , 1999 .