The “Naked Coral” Hypothesis Revisited – Evidence for and Against Scleractinian Monophyly

The relationship between Scleractinia and Corallimorpharia, Orders within Anthozoa distinguished by the presence of an aragonite skeleton in the former, is controversial. Although classically considered distinct groups, some phylogenetic analyses have placed the Corallimorpharia within a larger Scleractinia/Corallimorpharia clade, leading to the suggestion that the Corallimorpharia are “naked corals” that arose via skeleton loss during the Cretaceous from a Scleractinian ancestor. Scleractinian paraphyly is, however, contradicted by a number of recent phylogenetic studies based on mt nucleotide (nt) sequence data. Whereas the “naked coral” hypothesis was based on analysis of the sequences of proteins encoded by a relatively small number of mt genomes, here a much-expanded dataset was used to reinvestigate hexacorallian phylogeny. The initial observation was that, whereas analyses based on nt data support scleractinian monophyly, those based on amino acid (aa) data support the “naked coral” hypothesis, irrespective of the method and with very strong support. To better understand the bases of these contrasting results, the effects of systematic errors were examined. Compared to other hexacorallians, the mt genomes of “Robust” corals have a higher (A+T) content, codon usage is far more constrained, and the proteins that they encode have a markedly higher phenylalanine content, leading us to suggest that mt DNA repair may be impaired in this lineage. Thus the “naked coral” topology could be caused by high levels of saturation in these mitochondrial sequences, long-branch effects or model violations. The equivocal results of these extensive analyses highlight the fundamental problems of basing coral phylogeny on mitochondrial sequence data.

[1]  James M. Pflug,et al.  Phylogenomics of the superfamily Dytiscoidea (Coleoptera: Adephaga) with an evaluation of phylogenetic conflict and systematic error. , 2019, Molecular phylogenetics and evolution.

[2]  A. Morandini,et al.  Fast-Evolving Mitochondrial DNA in Ceriantharia: A Reflection of Hexacorallia Paraphyly? , 2014, PloS one.

[3]  S. Cairns,et al.  Deltocyathiidae, an early‐diverging family of Robust corals (Anthozoa, Scleractinia) , 2013 .

[4]  Marcelo Serrano Zanetti,et al.  CodonPhyML: Fast Maximum Likelihood Phylogeny Estimation under Codon Substitution Models , 2013, Molecular biology and evolution.

[5]  A. Collins,et al.  Cnidarian phylogenetic relationships as revealed by mitogenomics , 2013, BMC Evolutionary Biology.

[6]  Chaolun Allen Chen,et al.  Novel organization of the mitochondrial genome in the deep-sea coral, Madrepora oculata (Hexacorallia, Scleractinia, Oculinidae) and its taxonomic implications. , 2012, Molecular phylogenetics and evolution.

[7]  M. Medina,et al.  Evolutionary insights into scleractinian corals using comparative genomic hybridizations , 2012, BMC Genomics.

[8]  S. Cairns,et al.  The first modern solitary Agariciidae (Anthozoa, Scleractinia) revealed by molecular and microstructural analysis , 2012, Invertebrate Systematics.

[9]  Danwei Huang Threatened Reef Corals of the World , 2012, PloS one.

[10]  G. Jones,et al.  Atmospheric dimethysulphide production from corals in the Great Barrier Reef and links to solar radiation, climate and coral bleaching , 2012, Biogeochemistry.

[11]  S. Johansen,et al.  Mitogenome rearrangement in the cold-water scleractinian coral Lophelia pertusa (Cnidaria, Anthozoa) involves a long-term evolving group I intron. , 2011, Molecular phylogenetics and evolution.

[12]  S. Cairns,et al.  The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals , 2011, BMC Evolutionary Biology.

[13]  Y. Won,et al.  The complete mitochondrial genome of Calicogorgia granulosa (Anthozoa: Octocorallia): potential gene novelty in unidentified ORFs formed by repeat expansion and segmental duplication. , 2011, Gene.

[14]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[15]  A. Fujiyama,et al.  Using the Acropora digitifera genome to understand coral responses to environmental change , 2011, Nature.

[16]  Chaolun Allen Chen,et al.  Seventy-four universal primers for characterizing the complete mitochondrial genomes of scleractinian corals (Cnidaria; Anthozoa) , 2011 .

[17]  A. Baird,et al.  Cleaning up the 'Bigmessidae': Molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae , 2011, BMC Evolutionary Biology.

[18]  F. Montero,et al.  The relationship between the error catastrophe, survival of the flattest, and natural selection , 2011, BMC Evolutionary Biology.

[19]  J. Ott Cold‐Water Corals: The Biology and Geology of Deep‐Sea Coral Habitats , 2010 .

[20]  S. Cairns,et al.  A Comprehensive Phylogenetic Analysis of the Scleractinia (Cnidaria, Anthozoa) Based on Mitochondrial CO1 Sequence Data , 2010, PloS one.

[21]  H. Lasker,et al.  Repeated loss of coloniality and symbiosis in scleractinian corals , 2010, Proceedings of the National Academy of Sciences.

[22]  S. Cairns,et al.  Monophyletic origin of Caryophyllia (Scleractinia, Caryophylliidae), with descriptions of six new species , 2010 .

[23]  J. Gattuso,et al.  Corrigendum to "Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to p CO 2 and temperature levels projected for the year 2100 AD" published in Biogeosciences, 7, 289–300, 2010 , 2010 .

[24]  J. Gattuso,et al.  Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to p CO 2 and temperature levels projected for the year 2100 AD , 2010 .

[25]  G. Huttley Do genomic datasets resolve the correct relationship among the placental, marsupial and monotreme lineages? , 2009 .

[26]  V. B. Yap,et al.  Estimates of the Effect of Natural Selection on Protein-Coding Content , 2009, Molecular biology and evolution.

[27]  Nicolas Lartillot,et al.  PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating , 2009, Bioinform..

[28]  Nathan C. Sheffield,et al.  Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics. , 2009, Systematic biology.

[29]  N. Knowlton,et al.  Mitochondrial and Nuclear Genes Suggest that Stony Corals Are Monophyletic but Most Families of Stony Corals Are Not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria) , 2008, PloS one.

[30]  Chaolun Allen Chen,et al.  Unique Mitogenomic Features in the Scleractinian Family Pocilloporidae (Scleractinia: Astrocoeniina) , 2008, Marine Biotechnology.

[31]  M. Coffroth,et al.  DNA BARCODING: Barcoding corals: limited by interspecific divergence, not intraspecific variation , 2008, Molecular ecology resources.

[32]  R. Meier,et al.  Slow Mitochondrial COI Sequence Evolution at the Base of the Metazoan Tree and Its Implications for DNA Barcoding , 2008, Journal of Molecular Evolution.

[33]  Gokhan Danabasoglu,et al.  Potential role of the ocean thermostat in determining regional differences in coral reef bleaching events , 2008 .

[34]  S. Tillier,et al.  The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: the putative D-loop and a novel ORF of unknown function. , 2007, Gene.

[35]  R. Knight,et al.  PyCogent: a toolkit for making sense from sequence , 2007, Genome Biology.

[36]  Naiara Rodríguez-Ezpeleta,et al.  Detecting and overcoming systematic errors in genome-scale phylogenies. , 2007, Systematic biology.

[37]  Dan Tchernov,et al.  Scleractinian Coral Species Survive and Recover from Decalcification , 2007, Science.

[38]  S. France,et al.  The complete mitochondrial genome of the black coral Chrysopathes formosa (Cnidaria:Anthozoa:Antipatharia) supports classification of antipatharians within the subclass Hexacorallia. , 2007, Molecular phylogenetics and evolution.

[39]  H. Philippe,et al.  Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model , 2007, BMC Evolutionary Biology.

[40]  F. Sinniger,et al.  Mitochondrial Genome of Savalia savaglia (Cnidaria, Hexacorallia) and Early Metazoan Phylogeny , 2007, Journal of Molecular Evolution.

[41]  Bastien Boussau,et al.  Efficient likelihood computations with nonreversible models of evolution. , 2006, Systematic biology.

[42]  J. Boore,et al.  Naked corals: skeleton loss in Scleractinia. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[43]  N. Knowlton,et al.  Analysis of complete mitochondrial DNA sequences of three members of the Montastraea annularis coral species complex (Cnidaria, Anthozoa, Scleractinia) , 2005, Coral Reefs.

[44]  Chaolun Allen Chen,et al.  Mitogenomic analysis of Montipora cactus and Anacropora matthai (cnidaria; scleractinia; acroporidae) indicates an unequal rate of mitochondrial evolution among Acroporidae corals , 2005, Coral Reefs.

[45]  K. Katoh,et al.  MAFFT version 5: improvement in accuracy of multiple sequence alignment , 2005, Nucleic acids research.

[46]  T. Embley,et al.  Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I , 2004, Nature.

[47]  D. Penny,et al.  Four new avian mitochondrial genomes help get to basic evolutionary questions in the late cretaceous. , 2004, Molecular biology and evolution.

[48]  H. Philippe,et al.  A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. , 2004, Molecular biology and evolution.

[49]  N. Knowlton,et al.  Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals , 2004, Nature.

[50]  Marymegan Daly,et al.  Systematics of the Hexacorallia (Cnidaria: Anthozoa) , 2003 .

[51]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[52]  D. Penny,et al.  The root of the mammalian tree inferred from whole mitochondrial genomes. , 2003, Molecular phylogenetics and evolution.

[53]  Sudhir Kumar,et al.  Heterogeneity of nucleotide frequencies among evolutionary lineages and phylogenetic inference. , 2003, Molecular biology and evolution.

[54]  M. Oppen,et al.  Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria) , 2002, Molecular ecology.

[55]  J. Reed Deep-water Oculina coral reefs of Florida: biology, impacts, and management , 2002, Hydrobiologia.

[56]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[57]  J. Dower,et al.  High abundance of larval rockfish over Cobb Seamount, an isolated seamount in the Northeast Pacific , 2001 .

[58]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[59]  S. Whelan,et al.  A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. , 2001, Molecular biology and evolution.

[60]  Stephen J Freeland,et al.  A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes , 2001, Genome Biology.

[61]  D. Fautin,et al.  The Origins of Modern Corals , 2001, Science.

[62]  P Stothard,et al.  The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. , 2000, BioTechniques.

[63]  P. Waddell,et al.  Plastid Genome Phylogeny and a Model of Amino Acid Substitution for Proteins Encoded by Chloroplast DNA , 2000, Journal of Molecular Evolution.

[64]  Chaolun Allen Chen,et al.  Universal Primers for Amplification of Mitochondrial Small Subunit Ribosomal RNA-Encoding Gene in Scleractinian Corals , 2000, Marine Biotechnology.

[65]  James Lyons-Weiler,et al.  Evolutionary origin, diversification and specialization of eukaryotic MutS homolog mismatch repair proteins. , 2000, Nucleic acids research.

[66]  D. Miller,et al.  Gene content and organization in a segment of the mitochondrial genome of the scleractinian coral Acropora tenuis: major differences in gene order within the anthozoan subclass zoantharia. , 1999, Molecular biology and evolution.

[67]  T. Cavalier-smith,et al.  Sequence Analysis of the Mitochondrial Genome of Sarcophyton glaucum: Conserved Gene Order Among Octocorals , 1998, Journal of Molecular Evolution.

[68]  J. Huelsenbeck,et al.  Base compositional bias and phylogenetic analyses: a test of the "flying DNA" hypothesis. , 1998, Molecular phylogenetics and evolution.

[69]  M. Gouy,et al.  Inferring pattern and process: maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. , 1998, Molecular biology and evolution.

[70]  R. Okimoto,et al.  The mitochondrial genome of the sea anemone Metridium senile (Cnidaria): introns, a paucity of tRNA genes, and a near-standard genetic code. , 1998, Genetics.

[71]  S. Palumbi,et al.  Molecular evolution of a portion of the mitochondrial 16S ribosomal gene region in scleractinian corals , 1997, Journal of Molecular Evolution.

[72]  S. Palumbi,et al.  Evolution of Scleractinian Corals Inferred from Molecular Systematics , 1996, Science.

[73]  T. Cavalier-smith,et al.  A coral mitochondrial mutS gene , 1995, Nature.

[74]  R. Okimoto,et al.  Mitochondrial DNA of the sea anemone, Metridium senile (Cnidaria): Prokaryote-like genes for tRNAf-Met and small-subunit ribosomal RNA, and standard genetic code specificities for AGR and ATA codons , 1994, Journal of Molecular Evolution.

[75]  R. Vrijenhoek,et al.  DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. , 1994, Molecular marine biology and biotechnology.

[76]  M. Stoneking,et al.  Complete mitochondrial genome amplification , 1994, Nature Genetics.

[77]  M. Nei,et al.  Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. , 1993, Molecular biology and evolution.

[78]  Nick Goldman,et al.  Statistical tests of models of DNA substitution , 1993, Journal of Molecular Evolution.

[79]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[80]  J. Hartigan,et al.  Statistical Analysis of Hominoid Molecular Evolution , 1987 .

[81]  T. Stephenson Memoirs: On the Classification of Actiniaria: Part II.--Consideration of the whole group and its relationships, with special reference to forms not treated in Part I. , 1921 .

[82]  Y. Won,et al.  Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record. , 2012, Molecular phylogenetics and evolution.

[83]  D. Penny,et al.  Tinamous and moa flock together: mitochondrial genome sequence analysis reveals independent losses of flight among ratites. , 2010, Systematic biology.

[84]  Chaolun Allen Chen,et al.  The complete mitochondrial genomes of needle corals, Seriatopora spp. (Scleractinia: Pocilloporidae): an idiosyncratic atp8, duplicated trnW gene, and hypervariable regions used to determine species phylogenies and recently diverged populations. , 2008, Molecular phylogenetics and evolution.

[85]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[86]  W DimmicMatt,et al.  Markov Models of Protein Sequence Evolution , 2005 .

[87]  K. Iken,et al.  Corallimorphus profundus in shallow Antarctic habitats: Bionomics, histology, and systematics (Cnidaria: Hexacorallia) , 2003 .

[88]  P. Hagerman,et al.  The Mitochondrial Genome of Acropora tenuis (Cnidaria; Scleractinia) Contains a Large Group I Intron and a Candidate Control Region , 2002, Journal of Molecular Evolution.

[89]  C. Lottaz,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[90]  S. Cairns,et al.  Molecular phylogenetic hypotheses for the evolution of scleractinian corals , 2000 .

[91]  Alex D. Rogers,et al.  The Biology of Lophelia pertusa (Linnaeus 1758) and Other Deep‐Water Reef‐Forming Corals and Impacts from Human Activities. , 1999 .

[92]  Edward O. Wilson,et al.  Biodiversity II: understanding and protecting our biological resources , 1997 .

[93]  J. Stolarski Ontogenetic development of the thecal structures in caryophylliine scleractinian corals , 1995 .

[94]  S. Tavaré Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .

[95]  M. O. Dayhoff A model of evolutionary change in protein , 1978 .

[96]  M. O. Dayhoff,et al.  Atlas of protein sequence and structure , 1965 .