Polynomial Phase Estimation by Least Squares Phase Unwrapping

Estimating the coefficients of a noisy polynomial phase signal is important in fields including radar, biology and radio communications. One approach attempts to perform polynomial regression on the phase of the signal. This is complicated by the fact that the phase is wrapped modulo 2π and must be unwrapped before regression can be performed. In this paper, we consider an estimator that performs phase unwrapping in a least squares manner. We call this the least squares unwrapping (LSU) estimator. The LSU estimator can be computed in a reasonable amount of time for data sets of moderate size using existing general purpose algorithms from algebraic number theory. Under mild conditions on the distribution of the noise we describe the asymptotic properties of this estimator, showing that it is strongly consistent and asymptotically normally distributed. A key feature is that the LSU estimator is accurate over a far wider range of parameters than many popular existing estimators. Monte-Carlo simulations support our theoretical results and demonstrate the excellent statistical performance of the LSU estimator when compared with existing state-of-the-art estimators.

[1]  T. Hotz,et al.  Intrinsic means on the circle: uniqueness, locus and asymptotics , 2011, 1108.2141.

[2]  Mark R. Morelande,et al.  Parameter Estimation of Phase-Modulated Signals Using Bayesian Unwrapping , 2009, IEEE Transactions on Signal Processing.

[3]  Steven Kay,et al.  A Fast and Accurate Single Frequency Estimator , 2022 .

[4]  Mihai Datcu,et al.  Bayesian approaches to phase unwrapping: theoretical study , 2000, IEEE Trans. Signal Process..

[5]  Igor Djurovic,et al.  Aliasing detection and resolving in the estimation of polynomial-phase signal parameters , 2012, Signal Process..

[6]  R. McKilliam Lattice theory, circular statistics and polynomial phase signals , 2010 .

[7]  Igor Djurovic,et al.  A Hybrid CPF-HAF Estimation of Polynomial-Phase Signals: Detailed Statistical Analysis , 2012, IEEE Transactions on Signal Processing.

[8]  Joachim Hagenauer,et al.  Iterative detection of MIMO transmission using a list-sequential (LISS) detector , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[9]  Peter O'Shea,et al.  On Refining Polynomial Phase Signal Parameter Estimates , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Sergio Barbarossa,et al.  Analysis of polynomial-phase signals by the integrated generalized ambiguity function , 1997, IEEE Trans. Signal Process..

[11]  Alle-Jan van der Veen,et al.  A Low Complexity Blind Estimator of Narrowband Polynomial Phase Signals , 2010, IEEE Transactions on Signal Processing.

[12]  Ahmed M. Eltawil,et al.  Architectural Optimizations for Low-Power $K$ -Best MIMO Decoders , 2009, IEEE Transactions on Vehicular Technology.

[13]  Richard Andrew Wiltshire,et al.  A New Class of Multilinear Functions for Polynomial Phase Signal Analysis , 2009, IEEE Transactions on Signal Processing.

[14]  F. Hlawatsch,et al.  Linear and quadratic time-frequency signal representations , 1992, IEEE Signal Processing Magazine.

[15]  Boaz Porat,et al.  The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase , 1991, IEEE Trans. Signal Process..

[16]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[17]  C. Jordan,et al.  Calculus of Finite Differences. , 1963 .

[18]  John Kitchen A method for estimating the coefficients of a polynomial phase signal , 1994, Signal Process..

[19]  P. O'Shea A new technique for instantaneous frequency rate estimation , 2002, IEEE Signal Processing Letters.

[20]  Michael E. Pohst,et al.  On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications , 1981, SIGS.

[21]  Benjamin Friedlander,et al.  The discrete polynomial-phase transform , 1995, IEEE Trans. Signal Process..

[22]  Guotong Zhou,et al.  Exploring lag diversity in the high-order ambiguity function for polynomial phase signals , 1997, IEEE Signal Process. Lett..

[23]  Alexander Vardy,et al.  Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.

[24]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[25]  Barry G. Quinn,et al.  The Estimation and Tracking of Frequency , 2001 .

[26]  Claus-Peter Schnorr,et al.  Lattice basis reduction: Improved practical algorithms and solving subset sum problems , 1991, FCT.

[27]  I. Vaughan L. Clarkson,et al.  Direction Estimation by Minimum Squared Arc Length , 2012, IEEE Transactions on Signal Processing.

[28]  I. Vaughan L. Clarkson,et al.  Linear-Time Nearest Point Algorithms for Coxeter Lattices , 2009, IEEE Transactions on Information Theory.

[29]  D. Pollard Convergence of stochastic processes , 1984 .

[30]  J. Angeby Estimating signal parameters using the nonlinear instantaneous least squares approach , 2000 .

[31]  M. Riley Speech Time-Frequency Representations , 1989 .

[32]  E. J. Hannan,et al.  The estimation of frequency , 1973, Journal of Applied Probability.

[33]  T. Abatzoglou Fast Maximnurm Likelihood Joint Estimation of Frequency and Frequency Rate , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[34]  N. J. A. Sloane,et al.  Fast quantizing and decoding and algorithms for lattice quantizers and codes , 1982, IEEE Trans. Inf. Theory.

[35]  Petar M. Djuric,et al.  Parameter estimation of chirp signals , 1990, IEEE Trans. Acoust. Speech Signal Process..

[36]  B. G. Quinn,et al.  Polynomial-phase estimation, phase unwrapping and the nearest lattice point problem , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[37]  B. Porat,et al.  Linear FM signal parameter estimation from discrete-time observations , 1991 .

[38]  LJubisa Stankovic,et al.  A parametric method for non-stationary interference suppression in direct sequence spread-spectrum systems , 2011, Signal Process..

[39]  Jaakko Astola,et al.  Phase Local Approximation (PhaseLa) Technique for Phase Unwrap From Noisy Data , 2008, IEEE Transactions on Image Processing.

[40]  Jean-Luc Chabert,et al.  Integer-Valued Polynomials , 1996 .

[41]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[42]  Joseph M. Francos,et al.  Model based phase unwrapping of 2-D signals , 1996, IEEE Trans. Signal Process..

[43]  Steven A. Tretter,et al.  Estimating the frequency of a noisy sinusoid by linear regression , 1985, IEEE Trans. Inf. Theory.

[44]  Boaz Porat,et al.  Estimation and classification of polynomial-phase signals , 1991, IEEE Trans. Inf. Theory.

[45]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[46]  Barry Quinn Phase-only information loss , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[47]  Gerard Ledwich,et al.  A computationally efficient technique for estimating the parameters of polynomial-phase signals from noisy observations , 2005, IEEE Transactions on Signal Processing.

[48]  Bill Moran,et al.  A P ] 2 N ov 2 01 2 POLYNOMIAL PHASE ESTIMATION BY PHASE UNWRAPPING By , 2012 .

[49]  Peter O'Shea,et al.  A fast algorithm for estimating the parameters of a quadratic FM signal , 2004, IEEE Transactions on Signal Processing.

[50]  I. Vaughan L. Clarkson,et al.  The asymptotic properties of polynomial phase estimation by least squares phase unwrapping , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[51]  I. Vaughan L. Clarkson,et al.  Frequency Estimation by Phase Unwrapping , 2010, IEEE Transactions on Signal Processing.

[52]  I. Vaughan L. Clarkson,et al.  An Algorithm to Compute the Nearest Point in the Lattice $A_{n}^*$ , 2008, IEEE Transactions on Information Theory.

[53]  I. Vaughan L. Clarkson,et al.  Identifiability and Aliasing in Polynomial-Phase Signals , 2009, IEEE Transactions on Signal Processing.

[54]  R. Bhattacharya,et al.  LARGE SAMPLE THEORY OF INTRINSIC AND EXTRINSIC SAMPLE MEANS ON MANIFOLDS—II , 2003 .

[55]  N. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[56]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[57]  László Babai,et al.  On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..

[58]  Anna Scaglione,et al.  Product high-order ambiguity function for multicomponent polynomial-phase signal modeling , 1998, IEEE Trans. Signal Process..

[59]  Paul Erdös,et al.  On Some Sequences of Integers , 1936 .

[60]  Xiang-Gen Xia Dynamic range of the detectable parameters for polynomial phase signals using multiple-lag diversities in high-order ambiguity functions , 2001, IEEE Trans. Inf. Theory.

[61]  John B. Anderson,et al.  Sequential Coding Algorithms: A Survey and Cost Analysis , 1984, IEEE Trans. Commun..

[62]  Károly Jordán Calculus of finite differences , 1951 .

[63]  Boualem Boashash,et al.  Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra , 1994, IEEE Trans. Signal Process..

[64]  Daniele Micciancio,et al.  The hardness of the closest vector problem with preprocessing , 2001, IEEE Trans. Inf. Theory.

[65]  N Suga,et al.  Peripheral specialization for fine analysis of doppler-shifted echoes in the auditory system of the "CF-FM" bat Pteronotus parnellii. , 1975, The Journal of experimental biology.

[66]  J. Angeby Aliasing of polynomial-phase signal parameters , 2000 .

[67]  Benjamin Friedlander,et al.  Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals , 1996, IEEE Trans. Inf. Theory.

[68]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[69]  Zhan Guo,et al.  Algorithm and implementation of the K-best sphere decoding for MIMO detection , 2006, IEEE Journal on Selected Areas in Communications.