Quantifying heritable variation in fitness-related traits of wild, farmed and hybrid Atlantic salmon families in a wild river environment

[1]  F. Nilsen,et al.  Hatching Time and Alevin Growth Prior to the Onset of Exogenous Feeding in Farmed, Wild and Hybrid Norwegian Atlantic Salmon , 2014, PloS one.

[2]  J. Hutchings,et al.  Effects of domestication on parr maturity, growth, and vulnerability to predation in Atlantic salmon , 2014 .

[3]  D. Fraser,et al.  The Between-Population Genetic Architecture of Growth, Maturation, and Plasticity in Atlantic Salmon , 2014, Genetics.

[4]  F. Nilsen,et al.  Growth reaction norms of domesticated, wild and hybrid Atlantic salmon families in response to differing social and physical environments , 2013, BMC Evolutionary Biology.

[5]  K. Glover,et al.  Atlantic salmon populations invaded by farmed escapees: quantifying genetic introgression with a Bayesian approach and SNPs , 2013, BMC Genetics.

[6]  L. Bernatchez,et al.  SNP‐array reveals genome‐wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar) , 2013, Molecular ecology.

[7]  F. Nilsen,et al.  Does Domestication Cause Changes in Growth Reaction Norms? A Study of Farmed, Wild and Hybrid Atlantic Salmon Families Exposed to Environmental Stress , 2013, PloS one.

[8]  K. Glover,et al.  Performance of farmed, hybrid, and wild Atlantic salmon (Salmo salar) families in a natural river environment , 2012 .

[9]  K. Glover,et al.  Three Decades of Farmed Escapees in the Wild: A Spatio-Temporal Analysis of Atlantic Salmon Population Genetic Structure throughout Norway , 2012, PloS one.

[10]  T. F. Hansen,et al.  Heritability is not Evolvability , 2011, Evolutionary Biology.

[11]  B. Letcher,et al.  Maintenance of phenotypic variation: repeatability, heritability and size-dependent processes in a wild brook trout population , 2011, Evolutionary applications.

[12]  L. Bernatchez,et al.  Extent and scale of local adaptation in salmonid fishes: review and meta-analysis , 2011, Heredity.

[13]  L. Bernatchez,et al.  Quantitative genetic parameters for wild stream‐living brown trout: heritability and parental effects , 2010, Journal of evolutionary biology.

[14]  A. L. Houde,et al.  Reduced anti-predator responses in multi-generational hybrids of farmed and wild Atlantic salmon (Salmo salar L.) , 2010, Conservation Genetics.

[15]  S. Brotherstone,et al.  Predictions of response to selection caused by angling in a wild population of Atlantic salmon (Salmo salar) , 2010 .

[16]  Jarrod D. Hadfield,et al.  MCMC methods for multi-response generalized linear mixed models , 2010 .

[17]  J. Andrew Royle,et al.  Mixed Effects Models and Extensions in Ecology with R , 2009 .

[18]  Mollie E. Brooks,et al.  Generalized linear mixed models: a practical guide for ecology and evolution. , 2009, Trends in ecology & evolution.

[19]  E. Slinde,et al.  A comparison of farmed, wild and hybrid Atlantic salmon (Salmo salar L.) reared under farming conditions , 2009 .

[20]  S. Carlson,et al.  A review of quantitative genetic components of fitness in salmonids: implications for adaptation to future change , 2008, Evolutionary applications.

[21]  L. Bernatchez,et al.  Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation , 2008, Molecular ecology.

[22]  W. Jordan,et al.  A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation , 2007, Biological reviews of the Cambridge Philosophical Society.

[23]  Anne Charmantier,et al.  Environmental quality and evolutionary potential: lessons from wild populations , 2005, Proceedings of the Royal Society B: Biological Sciences.

[24]  M. Mangel,et al.  Fugitive Salmon: Assessing the Risks of Escaped Fish from Net-Pen Aquaculture , 2005 .

[25]  K. Glover,et al.  Microsatellite analysis in domesticated and wild Atlantic salmon (Salmo salar L.): allelic diversity and identification of individuals , 2004 .

[26]  L. Kruuk Estimating genetic parameters in natural populations using the "animal model". , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[27]  J. Taggart,et al.  Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[28]  L. Bernatchez,et al.  Alternative male life‐history tactics as potential vehicles for speeding introgression of farm salmon traits into wild populations , 2003 .

[29]  I. Fleming,et al.  Effects of domestication on growth physiology and endocrinology of Atlantic salmon (Salmo salar) , 2002 .

[30]  M. Lynch,et al.  Captive breeding and the genetic fitness of natural populations , 2001, Conservation Genetics.

[31]  I. Fleming,et al.  Lifetime success and interactions of farm salmon invading a native population , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[32]  E. Verspoor,et al.  A New Design of Instream Incubator for Planting Out and Monitoring Atlantic Salmon Eggs , 2000 .

[33]  S. Einum,et al.  SELECTION AGAINST LATE EMERGENCE AND SMALL OFFSPRING IN ATLANTIC SALMON (SALMO SALAR) , 2000, Evolution; international journal of organic evolution.

[34]  D. Bradley,et al.  Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations , 1999 .

[35]  W. Ewens Genetics and analysis of quantitative traits , 1999 .

[36]  S. Einum,et al.  Maternal effects of egg size in brown trout (Salmo trutta): norms of reaction to environmental quality , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[37]  C. Fox,et al.  MATERNAL EFFECTS ON OFFSPRING SIZE: VARIATION THROUGH EARLY DEVELOPMENT OF CHINOOK SALMON , 1999, Evolution; international journal of organic evolution.

[38]  L. Hansen,et al.  The incidence of escaped farmed Atlantic salmon, Salmo salar L., in the Faroese fishery and estimates of catches of wild salmon , 1999 .

[39]  J. Taggart,et al.  Genetic impact of escaped farmed Atlantic salmon (Salmo salar L.) on native populations: use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment , 1997 .

[40]  H. M. Gjøen,et al.  Past, present, and future of genetic improvement in salmon aquaculture , 1997 .

[41]  S. Einum,et al.  Genetic divergence and interactions in the wild among native, farmed and hybrid Atlantic salmon , 1997 .

[42]  M. Gross,et al.  An experimental study of the reproductive behaviour and success of farmed and wild Atlantic salmon (Salmo salar) , 1996 .

[43]  P. Fiske,et al.  Relationships between the frequency of farmed Atlantic salmon, Salmo salar L., in wild salmon populations and fish farming activity in Norway, 1989–2004 , 2006 .

[44]  K. Glover,et al.  Evidence of temporal genetic change in wild Atlantic salmon, Salmo salar L., populations affected by farm escapees , 2006 .

[45]  Trygve Gjedrem,et al.  Genetic improvement of cold‐water fish species , 2000 .

[46]  P. McGinnity,et al.  Genetic changes in an Atlantic salmon population resulting from escaped juvenile farm salmon , 1998 .

[47]  G. Tamura,et al.  [Microsatellite analysis]. , 1996, Nihon rinsho. Japanese journal of clinical medicine.

[48]  J. A. Ventura,et al.  Atlantic Salmon , 1988, Springer Netherlands.