A polynomial case of convex integer quadratic programming problems with box integer constraints
暂无分享,去创建一个
[1] Christoph Buchheim,et al. An Exact Algorithm for Nonconvex Quadratic Integer Minimization Using Ellipsoidal Relaxations , 2013, SIAM J. Optim..
[2] Endre Boros,et al. A max-flow approach to improved lower bounds for quadratic unconstrained binary optimization (QUBO) , 2008, Discret. Optim..
[3] Francisco Barahona,et al. A solvable case of quadratic 0-1 programming , 1986, Discret. Appl. Math..
[4] David S. Johnson,et al. Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .
[5] Erich Steiner,et al. A polynomial case of unconstrained zero-one quadratic optimization , 2001, Math. Program..
[6] Duan Li,et al. On duality gap in binary quadratic programming , 2012, J. Glob. Optim..
[7] Panos M. Pardalos,et al. Computational aspects of a branch and bound algorithm for quadratic zero-one programming , 1990, Computing.
[8] M. C. Puri,et al. Ranking in quadratic integer programming problems , 1996 .
[9] Dorit S. Hochbaum,et al. Strongly Polynomial Algorithms for the Quadratic Transportation Problem with a Fixed Number of Sources , 1994, Math. Oper. Res..
[10] Y. Ye,et al. Semidefinite Relaxations, Multivariate Normal Distributions, and Order Statistics , 1998 .
[11] David Avis,et al. Reverse Search for Enumeration , 1996, Discret. Appl. Math..
[12] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[13] Srimat T. Chakradhar,et al. A solvable class of quadratic 0-1 programming , 1992, Discret. Appl. Math..
[14] J. Rhys. A Selection Problem of Shared Fixed Costs and Network Flows , 1970 .
[15] Ivo Nowak,et al. Lagrangian Smoothing Heuristics for Max-Cut , 2005, J. Heuristics.
[16] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[17] Duan Li,et al. A polynomial case of the cardinality-constrained quadratic optimization problem , 2013, J. Glob. Optim..
[18] Xiaoling Sun,et al. Polynomially Solvable Cases of Binary Quadratic Programs , 2010 .
[19] Imad M. Jaimoukha,et al. New bounds on the unconstrained quadratic integer programming problem , 2007, J. Glob. Optim..
[20] G. Q. Li,et al. Global optimality conditions and optimization methods for quadratic integer programming problems , 2011, J. Glob. Optim..
[21] Xiaoling Sun,et al. Nonlinear Integer Programming , 2006 .
[22] Ron Shamir,et al. A polynomial algorithm for an integer quadratic non-separable transportation problem , 1992, Math. Program..
[23] Duan Li,et al. An exact solution method for unconstrained quadratic 0–1 programming: a geometric approach , 2012, J. Glob. Optim..
[24] S. Selcuk Erenguc,et al. An algorithm for indefinite integer quadratic programming , 1991 .
[25] Alberto Caprara,et al. An Effective Branch-and-Bound Algorithm for Convex Quadratic Integer Programming , 2010, IPCO.
[26] Krassimira Genova,et al. An approximate algorithm for nonlinear integer programming , 1994 .
[27] Pierre Hansen,et al. Roof duality, complementation and persistency in quadratic 0–1 optimization , 1984, Math. Program..
[28] Nora Sleumer,et al. Output-Sensitive Cell Enumeration in Hyperplane Arrangements , 1998, Nord. J. Comput..
[29] T. Zaslavsky. Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .
[30] P. Pardalos,et al. Handbook of Combinatorial Optimization , 1998 .