A polynomial case of convex integer quadratic programming problems with box integer constraints

In this paper, we study a special class of convex quadratic integer programming problem with box constraints. By using the decomposition approach, we propose a fixed parameter polynomial time algorithm for such a class of problems. Given a problem with size $$n$$n being the number of decision variables and $$m$$m being the possible integer values of each decision variable, if the $$n-k$$n-k largest eigenvalues of the quadratic coefficient matrix in the objective function are identical for some $$k$$k$$(0<k<n)$$(0<k<n), we can construct a solution algorithm with a computational complexity of $${\mathcal {O}}((mn)^k)$$O((mn)k). To achieve such complexity, we decompose the original problem into several convex quadratic programming problems, where the total number of the subproblems is bounded by the number of cells generated by a set of hyperplane arrangements in $$\mathbb {R}^k$$Rk space, which can be efficiently identified by cell enumeration algorithm.

[1]  Christoph Buchheim,et al.  An Exact Algorithm for Nonconvex Quadratic Integer Minimization Using Ellipsoidal Relaxations , 2013, SIAM J. Optim..

[2]  Endre Boros,et al.  A max-flow approach to improved lower bounds for quadratic unconstrained binary optimization (QUBO) , 2008, Discret. Optim..

[3]  Francisco Barahona,et al.  A solvable case of quadratic 0-1 programming , 1986, Discret. Appl. Math..

[4]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[5]  Erich Steiner,et al.  A polynomial case of unconstrained zero-one quadratic optimization , 2001, Math. Program..

[6]  Duan Li,et al.  On duality gap in binary quadratic programming , 2012, J. Glob. Optim..

[7]  Panos M. Pardalos,et al.  Computational aspects of a branch and bound algorithm for quadratic zero-one programming , 1990, Computing.

[8]  M. C. Puri,et al.  Ranking in quadratic integer programming problems , 1996 .

[9]  Dorit S. Hochbaum,et al.  Strongly Polynomial Algorithms for the Quadratic Transportation Problem with a Fixed Number of Sources , 1994, Math. Oper. Res..

[10]  Y. Ye,et al.  Semidefinite Relaxations, Multivariate Normal Distributions, and Order Statistics , 1998 .

[11]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[12]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[13]  Srimat T. Chakradhar,et al.  A solvable class of quadratic 0-1 programming , 1992, Discret. Appl. Math..

[14]  J. Rhys A Selection Problem of Shared Fixed Costs and Network Flows , 1970 .

[15]  Ivo Nowak,et al.  Lagrangian Smoothing Heuristics for Max-Cut , 2005, J. Heuristics.

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  Duan Li,et al.  A polynomial case of the cardinality-constrained quadratic optimization problem , 2013, J. Glob. Optim..

[18]  Xiaoling Sun,et al.  Polynomially Solvable Cases of Binary Quadratic Programs , 2010 .

[19]  Imad M. Jaimoukha,et al.  New bounds on the unconstrained quadratic integer programming problem , 2007, J. Glob. Optim..

[20]  G. Q. Li,et al.  Global optimality conditions and optimization methods for quadratic integer programming problems , 2011, J. Glob. Optim..

[21]  Xiaoling Sun,et al.  Nonlinear Integer Programming , 2006 .

[22]  Ron Shamir,et al.  A polynomial algorithm for an integer quadratic non-separable transportation problem , 1992, Math. Program..

[23]  Duan Li,et al.  An exact solution method for unconstrained quadratic 0–1 programming: a geometric approach , 2012, J. Glob. Optim..

[24]  S. Selcuk Erenguc,et al.  An algorithm for indefinite integer quadratic programming , 1991 .

[25]  Alberto Caprara,et al.  An Effective Branch-and-Bound Algorithm for Convex Quadratic Integer Programming , 2010, IPCO.

[26]  Krassimira Genova,et al.  An approximate algorithm for nonlinear integer programming , 1994 .

[27]  Pierre Hansen,et al.  Roof duality, complementation and persistency in quadratic 0–1 optimization , 1984, Math. Program..

[28]  Nora Sleumer,et al.  Output-Sensitive Cell Enumeration in Hyperplane Arrangements , 1998, Nord. J. Comput..

[29]  T. Zaslavsky Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .

[30]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .