The radial width of a Coronal Mass Ejection between 0.1 and 0.4 AU estimated from the Heliospheric Imager on STEREO

Abstract. On 15–17 February 2008, a CME with an approximately circular cross section was tracked through successive images obtained by the Heliospheric Imager (HI) instrument onboard the STEREO-A spacecraft. Reasoning that an idealised flux rope is cylindrical in shape with a circular cross-section, best fit circles are used to determine the radial width of the CME. As part of the process the radial velocity and longitude of propagation are determined by fits to elongation-time maps as 252±5 km/s and 70±5° respectively. With the longitude known, the radial size is calculated from the images, taking projection effects into account. The radial width of the CME, S (AU), obeys a power law with heliocentric distance, R, as the CME travels between 0.1 and 0.4 AU, such that S=0.26 R0.6±0.1. The exponent value obtained is compared to published studies based on statistical surveys of in situ spacecraft observations of ICMEs between 0.3 and 1.0 AU, and general agreement is found. This paper demonstrates the new opportunities provided by HI to track the radial width of CMEs through the previously unobservable zone between the LASCO field of view and Helios in situ measurements.

[1]  R. Schwenn,et al.  Large-scale propagation properties of interplanetary disturbances revealed from IPS and spacecraft observations , 1989 .

[2]  N. Gopalswamy,et al.  A catalog of white light coronal mass ejections observed by the SOHO spacecraft , 2004 .

[3]  James Chen Theory of prominence eruption and propagation: Interplanetary consequences , 1996 .

[4]  A. Vourlidas,et al.  Modeling of Flux Rope Coronal Mass Ejections , 2006 .

[5]  P. Lamy,et al.  Evidence of an Erupting Magnetic Flux Rope: LASCO Coronal Mass Ejection of 1997 April 13 , 1997 .

[6]  I. Richardson,et al.  Interplanetary Coronal Mass Ejections During 1996-2007 , 2007 .

[7]  A. Hundhausen,et al.  Sizes and locations of coronal mass ejections - SMM observations from 1980 and 1984-1989 , 1993 .

[8]  M. Owens Magnetic cloud distortion resulting from propagation through a structured solar wind: Models and observations , 2006 .

[9]  M. Owens Combining remote and in situ observations of coronal mass ejections to better constrain magnetic cloud reconstruction , 2008 .

[10]  Russell A. Howard,et al.  Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998 , 2000 .

[11]  S. Solanki,et al.  Observation of a bright coronal downflow by SOHO/EIT , 2006 .

[12]  M. Lockwood,et al.  First imaging of corotating interaction regions using the STEREO spacecraft , 2008 .

[13]  M. Owens,et al.  A kinematically distorted flux rope model for magnetic clouds , 2006 .

[14]  M. Lockwood,et al.  A Multispacecraft Analysis of a Small-Scale Transient Entrained by Solar Wind Streams , 2009 .

[15]  Y.-M. Wang,et al.  Observations of Flux Rope Formation in the Outer Corona , 2006 .

[16]  L. Burlaga,et al.  Heliospheric Images of the Solar Wind at Earth , 2008 .

[17]  J. Davies,et al.  First Imaging of Coronal Mass Ejections in the Heliosphere Viewed from Outside the Sun – Earth Line , 2008 .

[18]  R. Skoug,et al.  Weaker solar wind from the polar coronal holes and the whole Sun , 2008 .

[19]  Scott H. Hawley,et al.  Measurements of Flow Speeds in the Corona Between 2 and 30 R☉ , 1997 .

[20]  M. Lockwood,et al.  A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft , 2009 .

[21]  W. Thompson Coordinate systems for solar image data , 2006 .

[22]  M. Hidalgo A study of the expansion and distortion of the cross section of magnetic clouds in the interplanetary medium , 2003 .

[23]  L. Burlaga,et al.  Interplanetary magnetic clouds at 1 AU , 1982 .

[24]  David Gleicher A Statistical Study , 2006 .

[25]  J. Gosling,et al.  Overexpanding coronal mass ejections at high heliographic latitudes: Observations and simulations , 1998 .

[26]  J. Richardson,et al.  Characteristics of the interplanetary coronal mass ejections in the heliosphere between 0.3 and 5.4 AU , 2005 .

[27]  K. Olson,et al.  A Numerical Study of the Breakout Model for Coronal Mass Ejection Initiation , 2004 .

[28]  R. Lepping,et al.  Estimates of magnetic cloud expansion at 1 AU , 2008 .

[29]  Emilia Kilpua,et al.  Interplanetary coronal mass ejections in the near-Earth solar wind during the minimum periods following solar cycles 22 and 23 , 2011 .

[30]  J. Davies,et al.  A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO , 2009 .

[31]  L. Burlaga,et al.  SECCHI Observations of the Sun’s Garden-Hose Density Spiral , 2008 .

[32]  C. J. Wolfson,et al.  Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) , 2000, SPIE Optics + Photonics.

[33]  Mike Hapgood,et al.  SPACE PHYSICS COORDINATE TRANSFORMATIONS : A USER GUIDE , 1992 .

[34]  O. S. St. Cyr,et al.  Flux-Rope Coronal Mass Ejection Geometry and Its Relation to Observed Morphology , 2006 .

[35]  V. Bothmer,et al.  Eruptive prominences as sources of magnetic clouds in the solar wind , 1994 .

[36]  Therese Kucera,et al.  The STEREO Mission , 2005 .

[37]  V. Bothmer,et al.  Properties of structured coronal mass ejections in solar cycle 23 , 2004 .

[38]  C. J. Wolfson,et al.  Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) , 2008 .

[39]  I. Richardson,et al.  Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies , 2004 .

[40]  J. Davies,et al.  The Heliospheric Imagers Onboard the STEREO Mission , 2009 .

[41]  A. Vourlidas,et al.  The Proper Treatment of Coronal Mass Ejection Brightness: A New Methodology and Implications for Observations , 2006 .

[42]  Christopher J. Eyles,et al.  The STEREO heliospheric imager: how to detect CMEs in the heliosphere , 2004 .

[43]  H. Warren,et al.  A Streamer Ejection with Reconnection Close to the Sun , 2007 .

[44]  V. Bothmer,et al.  The structure and origin of magnetic clouds in the solar wind , 1997 .

[45]  R. Howard,et al.  Continuous tracking of coronal outflows : Two kinds of coronal mass ejections , 1999 .

[46]  P. Lamy,et al.  The Large Angle Spectroscopic Coronagraph (LASCO) , 1995 .

[47]  T. Horbury,et al.  ICMEs in the Inner Heliosphere: Origin, Evolution and Propagation Effects , 2006 .

[48]  A. Vourlidas,et al.  Large-Angle Spectrometric Coronagraph Measurements of the Energetics of Coronal Mass Ejections , 2000 .

[49]  H. Rosenbauer,et al.  Coronal mass ejections and interplanetary shocks , 1985 .

[50]  V. Bothmer,et al.  Signatures of fast CMEs in interplanetary space , 1996 .

[51]  R. Howard,et al.  LASCO and EIT Observations of Helical Structure in Coronal Mass Ejections , 1999 .

[52]  E. Roelof,et al.  Large-scale structure of the interplanetary medium , 1973 .

[53]  B. Thompson,et al.  Erupting Solar Magnetic Flux Ropes: Theory and Observation , 2001 .

[54]  Bernard V. Jackson,et al.  Analysis of Solar Wind Events Using Interplanetary Scintillation Remote Sensing 3D Reconstructions and Their Comparison at Mars , 2007 .

[55]  T. Forbes,et al.  CME Theory and Models , 2006 .

[56]  V. Bothmer,et al.  On the three-dimensional configuration of coronal mass ejections , 2004 .

[57]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[58]  John W. Belcher,et al.  A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU , 2005 .

[59]  Eckart Marsch,et al.  Physics of the Inner Heliosphere I. Large-Scale Phenomena. , 1990 .