Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation

A linearized Crank–Nicolson Galerkin finite element method with bilinear element for nonlinear Schrödinger equation is studied. By splitting the error into two parts which are called the temporal error and the spatial error, the unconditional superconvergence result is deduced. On one hand, the regularity for a time-discrete system is presented based on the proof of the temporal error. On the other hand, the classical Ritz projection is applied to get the spatial error with order $$O(h^2)$$O(h2) in $$L^2$$L2-norm, which plays an important role in getting rid of the restriction of $$\tau $$τ. Then the superclose estimates of order $$O(h^2+\tau ^2)$$O(h2+τ2) in $$H^1$$H1-norm is arrived at based on the relationship between the Ritz projection and the interpolated operator. At the same time, global superconvergence property is arrived at by the interpolated postprocessing technique. At last, three numerical examples are provided to confirm the theoretical analysis. Here, h is the subdivision parameter and $$\tau $$τ is the time step.

[1]  Weiwei Sun,et al.  A New Error Analysis of Characteristics-Mixed FEMs for Miscible Displacement in Porous Media , 2014, SIAM J. Numer. Anal..

[2]  Mehdi Dehghan,et al.  Numerical solution to the unsteady two‐dimensional Schrödinger equation using meshless local boundary integral equation method , 2008 .

[3]  Shi Dong-yang,et al.  Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016 .

[4]  Xin Liao,et al.  Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation , 2016, Appl. Math. Comput..

[5]  Yunqing Huang,et al.  The full-discrete mixed finite element methods for nonlinear hyperbolic equations , 1998 .

[6]  Weiwei Sun,et al.  Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations , 2007, Math. Comput..

[7]  Li Wu,et al.  Two‐grid mixed finite‐element methods for nonlinear Schrödinger equations , 2012 .

[8]  Weiwei Sun,et al.  Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations , 2015, Numerische Mathematik.

[9]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[10]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .

[11]  Yirang Yuan,et al.  Galerkin alternating-direction method for a kind of three-dimensional nonlinear hyperbolic problems , 2009, Comput. Math. Appl..

[12]  Haiming Gu,et al.  Characteristic finite element methods for nonlinear Sobolev equations , 1999, Appl. Math. Comput..

[13]  Weizhu Bao,et al.  Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..

[14]  Georgios Akrivis,et al.  Finite difference discretization of the cubic Schrödinger equation , 1993 .

[15]  Ameneh Taleei,et al.  A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients , 2010, Comput. Phys. Commun..

[16]  Wei Gong,et al.  A low order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term , 2015, Math. Comput. Simul..

[17]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.

[18]  Jr. H. H. Rachford Two-Level Discrete-Time Galerkin Approximations for Second Order Nonlinear Parabolic Partial Differential Equations , 1973 .

[19]  Dongyang Shi,et al.  Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation , 2014, Appl. Math. Lett..

[20]  Jilu Wang,et al.  A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..

[21]  Huadong Gao,et al.  Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.

[22]  Mitchell Luskin,et al.  A Galerkin Method for Nonlinear Parabolic Equations with Nonlinear Boundary Conditions , 1979 .

[23]  Hanquan Wang,et al.  Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations , 2005, Appl. Math. Comput..

[24]  Dongyang Shi,et al.  High accuracy analysis of the lowest order H1-Galerkin mixed finite element method for nonlinear sine-Gordon equations , 2017 .

[25]  Cheng Wang,et al.  Stability and Convergence Analysis of Fully Discrete Fourier Collocation Spectral Method for 3-D Viscous Burgers’ Equation , 2012, J. Sci. Comput..

[26]  Qianshun Chang,et al.  Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation , 1999 .

[27]  Charalambos Makridakis,et al.  A Space-Time Finite Element Method for the Nonlinear Schrödinger Equation: The Continuous Galerkin Method , 1999 .

[28]  Charalambos Makridakis,et al.  A space-time finite element method for the nonlinear Schröinger equation: the discontinuous Galerkin method , 1998, Math. Comput..

[29]  Hua Dai,et al.  Calculation of eigenpair derivatives for symmetric quadratic eigenvalue problem with repeated eigenvalues , 2016 .

[30]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[31]  BIYUE LIU,et al.  The Analysis of a Finite Element Method with Streamline Diffusion for the Compressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..

[32]  Cheng Wang,et al.  Long Time Stability of High Order MultiStep Numerical Schemes for Two-Dimensional Incompressible Navier-Stokes Equations , 2016, SIAM J. Numer. Anal..

[33]  Huadong Gao,et al.  Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations , 2016, J. Sci. Comput..

[34]  Weiwei Sun,et al.  Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..

[35]  Dongyang Shi,et al.  Superconvergence analysis for nonlinear parabolic equation with $$EQ_1^\mathrm{{rot}}$$EQ1rot nonconforming finite element , 2018 .

[36]  Luming Zhang,et al.  A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator , 2003, Appl. Math. Comput..