Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation
暂无分享,去创建一个
[1] Weiwei Sun,et al. A New Error Analysis of Characteristics-Mixed FEMs for Miscible Displacement in Porous Media , 2014, SIAM J. Numer. Anal..
[2] Mehdi Dehghan,et al. Numerical solution to the unsteady two‐dimensional Schrödinger equation using meshless local boundary integral equation method , 2008 .
[3] Shi Dong-yang,et al. Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016 .
[4] Xin Liao,et al. Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation , 2016, Appl. Math. Comput..
[5] Yunqing Huang,et al. The full-discrete mixed finite element methods for nonlinear hyperbolic equations , 1998 .
[6] Weiwei Sun,et al. Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations , 2007, Math. Comput..
[7] Li Wu,et al. Two‐grid mixed finite‐element methods for nonlinear Schrödinger equations , 2012 .
[8] Weiwei Sun,et al. Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations , 2015, Numerische Mathematik.
[9] Chi-Wang Shu,et al. Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .
[10] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .
[11] Yirang Yuan,et al. Galerkin alternating-direction method for a kind of three-dimensional nonlinear hyperbolic problems , 2009, Comput. Math. Appl..
[12] Haiming Gu,et al. Characteristic finite element methods for nonlinear Sobolev equations , 1999, Appl. Math. Comput..
[13] Weizhu Bao,et al. Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..
[14] Georgios Akrivis,et al. Finite difference discretization of the cubic Schrödinger equation , 1993 .
[15] Ameneh Taleei,et al. A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients , 2010, Comput. Phys. Commun..
[16] Wei Gong,et al. A low order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term , 2015, Math. Comput. Simul..
[17] Dongyang Shi,et al. Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.
[18] Jr. H. H. Rachford. Two-Level Discrete-Time Galerkin Approximations for Second Order Nonlinear Parabolic Partial Differential Equations , 1973 .
[19] Dongyang Shi,et al. Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation , 2014, Appl. Math. Lett..
[20] Jilu Wang,et al. A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..
[21] Huadong Gao,et al. Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.
[22] Mitchell Luskin,et al. A Galerkin Method for Nonlinear Parabolic Equations with Nonlinear Boundary Conditions , 1979 .
[23] Hanquan Wang,et al. Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations , 2005, Appl. Math. Comput..
[24] Dongyang Shi,et al. High accuracy analysis of the lowest order H1-Galerkin mixed finite element method for nonlinear sine-Gordon equations , 2017 .
[25] Cheng Wang,et al. Stability and Convergence Analysis of Fully Discrete Fourier Collocation Spectral Method for 3-D Viscous Burgers’ Equation , 2012, J. Sci. Comput..
[26] Qianshun Chang,et al. Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation , 1999 .
[27] Charalambos Makridakis,et al. A Space-Time Finite Element Method for the Nonlinear Schrödinger Equation: The Continuous Galerkin Method , 1999 .
[28] Charalambos Makridakis,et al. A space-time finite element method for the nonlinear Schröinger equation: the discontinuous Galerkin method , 1998, Math. Comput..
[29] Hua Dai,et al. Calculation of eigenpair derivatives for symmetric quadratic eigenvalue problem with repeated eigenvalues , 2016 .
[30] Weiwei Sun,et al. Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..
[31] BIYUE LIU,et al. The Analysis of a Finite Element Method with Streamline Diffusion for the Compressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..
[32] Cheng Wang,et al. Long Time Stability of High Order MultiStep Numerical Schemes for Two-Dimensional Incompressible Navier-Stokes Equations , 2016, SIAM J. Numer. Anal..
[33] Huadong Gao,et al. Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations , 2016, J. Sci. Comput..
[34] Weiwei Sun,et al. Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..
[35] Dongyang Shi,et al. Superconvergence analysis for nonlinear parabolic equation with $$EQ_1^\mathrm{{rot}}$$EQ1rot nonconforming finite element , 2018 .
[36] Luming Zhang,et al. A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator , 2003, Appl. Math. Comput..