Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide

Establishing processing–structure–property relationships for monolayer materials is crucial for a range of applications spanning optics, catalysis, electronics and energy. Presently, for molybdenum disulfide, a promising catalyst for artificial photosynthesis, considerable debate surrounds the structure/property relationships of its various allotropes. Here we unambiguously solve the structure of molybdenum disulfide monolayers using high-resolution transmission electron microscopy supported by density functional theory and show lithium intercalation to direct a preferential transformation of the basal plane from 2H (trigonal prismatic) to 1T′ (clustered Mo). These changes alter the energetics of molybdenum disulfide interactions with hydrogen (ΔGH), and, with respect to catalysis, the 1T′ transformation renders the normally inert basal plane amenable towards hydrogen adsorption and hydrogen evolution. Indeed, we show basal plane activation of 1T′ molybdenum disulfide and a lowering of ΔGH from +1.6 eV for 2H to +0.18 eV for 1T′, comparable to 2H molybdenum disulfide edges on Au(111), one of the most active hydrogen evolution catalysts known.

[1]  Vincent C. Tung,et al.  Towards solution processed all-carbon solar cells: a perspective , 2012 .

[2]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[3]  Gongxuan Lu,et al.  Dye-Sensitized Reduced Graphene Oxide Photocatalysts for Highly Efficient Visible-Light-Driven Water Reduction , 2011 .

[4]  Norbert Kruse,et al.  Single-layer MoS2 on mica: studies by means of scanning force microscopy , 1993 .

[5]  Fei Meng,et al.  Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. , 2013, Journal of the American Chemical Society.

[6]  Gongxuan Lu,et al.  Sites for High Efficient Photocatalytic Hydrogen Evolution on a Limited-Layered MoS2 Cocatalyst Confined on Graphene Sheets-The Role of Graphene , 2012 .

[7]  R. R. Haering,et al.  Structural destabilization induced by lithium intercalation in MoS2 and related compounds , 1983 .

[8]  M. Wrighton,et al.  Flat-band potential of n-type semiconducting molybdenum disulfide by cyclic voltammetry of two-electron reductants: interface energetics and the sustained photooxidation of chloride , 1979 .

[9]  Boris I. Yakobson,et al.  Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide , 2014, Nature Communications.

[10]  E. P. Lewis In perspective. , 1972, Nursing outlook.

[11]  B. Valeur,et al.  Molecular Fluorescence: Principles and Applications , 2001 .

[12]  P. Král,et al.  Robust carbon dioxide reduction on molybdenum disulphide edges , 2014, Nature Communications.

[13]  Hisato Yamaguchi,et al.  Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution. , 2012, Nature Materials.

[14]  I. Chorkendorff,et al.  Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution , 2005 .

[15]  Yang Yang,et al.  High-throughput solution processing of large-scale graphene. , 2009, Nature nanotechnology.

[16]  Rolf Erni,et al.  Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide , 2010, Advanced materials.

[17]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[18]  Mrinmoy De,et al.  Highly effective visible-light-induced H(2) generation by single-layer 1T-MoS(2) and a nanocomposite of few-layer 2H-MoS(2) with heavily nitrogenated graphene. , 2013, Angewandte Chemie.

[19]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[20]  Graeme Henkelman,et al.  A generalized solid-state nudged elastic band method. , 2012, The Journal of chemical physics.

[21]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[22]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[23]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[24]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[25]  T. Jaramillo,et al.  Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters. , 2014, Nature chemistry.

[26]  Yang,et al.  Raman study and lattice dynamics of single molecular layers of MoS2. , 1991, Physical review. B, Condensed matter.

[27]  G. Kresse,et al.  Ab initio study of the H2-H2S/MoS2 gas-solid interface : The nature of the catalytically active sites , 2000 .

[28]  J. Long,et al.  A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation , 2012, Science.

[29]  M. Kanatzidis,et al.  Exfoliated and Restacked MoS2 and WS2: Ionic or Neutral Species? Encapsulation and Ordering of Hard Electropositive Cations , 1999 .

[30]  J. Penner‐Hahn,et al.  Structural characterization and thermal stability of MoS2 intercalation compounds , 1998 .

[31]  B. V. Tilak,et al.  Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H , 2002 .

[32]  J. Nørskov,et al.  Hydrogen evolution on nano-particulate transition metal sulfides. , 2008, Faraday discussions.

[33]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[34]  Charlie Tsai,et al.  Tuning the MoS₂ edge-site activity for hydrogen evolution via support interactions. , 2014, Nano letters.

[35]  Pingwu Du,et al.  Making hydrogen from water using a homogeneous system without noble metals. , 2009, Journal of the American Chemical Society.

[36]  Agnes B Kane,et al.  Biological interactions of graphene-family nanomaterials: an interdisciplinary review. , 2012, Chemical research in toxicology.

[37]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[38]  Gongxuan Lu,et al.  Enhanced Electron Transfer from the Excited Eosin Y to mpg-C3N4 for Highly Efficient Hydrogen Evolution under 550 nm Irradiation , 2012 .

[39]  H. Gray,et al.  Hydrogen evolution catalyzed by cobaloximes. , 2009, Accounts of chemical research.

[40]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .

[41]  Jin Yu,et al.  Enhanced Electrocatalytic Properties of Transition-Metal Dichalcogenides Sheets by Spontaneous Gold Nanoparticle Decoration. , 2013, The journal of physical chemistry letters.

[42]  K. Naumann,et al.  Die elektrolytische Reduction des Strychnis und Brucins , 1901 .

[43]  P. Vignais,et al.  The membrane-bound hydrogenase of Rhodopseudomonas capsulata: Stability and catalytic properties , 1981 .

[44]  Thomas Bligaard,et al.  Trends in the exchange current for hydrogen evolution , 2005 .

[45]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[46]  Yang Yang,et al.  Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. , 2009, Nano letters.

[47]  R. Somoano,et al.  Alkali metal intercalates of molybdenum disulfide. , 1973 .

[48]  Hisato Yamaguchi,et al.  Coherent atomic and electronic heterostructures of single-layer MoS2. , 2012, ACS nano.

[49]  Klaus Kern,et al.  Atomic structure of reduced graphene oxide. , 2010, Nano letters.

[50]  C. Julien,et al.  Structural studies of MoS2 intercalated by lithium , 1989 .

[51]  J. Tafel Ueber Strychnin I , 1890 .

[52]  J. Schneider,et al.  Photocatalytic generation of hydrogen from water using a platinum(II) terpyridyl acetylide chromophore. , 2006, Journal of the American Chemical Society.

[53]  M. Kanatzidis,et al.  Exfoliated and Restacked MoS2 and WS2: Ionic or Neutral Species? Encapsulation and Ordering of Hard Electropositive Cations. , 2000 .

[54]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[55]  G. Henkelman,et al.  Solid-state dimer method for calculating solid-solid phase transitions. , 2014, The Journal of chemical physics.

[56]  Yang,et al.  Real-space imaging of single-layer MoS2 by scanning tunneling microscopy. , 1991, Physical review. B, Condensed matter.

[57]  C Jeffrey Brinker,et al.  Chemically exfoliated MoS2 as near-infrared photothermal agents. , 2012, Angewandte Chemie.

[58]  M. Kanatzidis,et al.  Structure of Restacked MoS2 and WS2 Elucidated by Electron Crystallography , 1999 .

[59]  Desheng Kong,et al.  Synthesis of MoS2 and MoSe2 films with vertically aligned layers. , 2013, Nano letters.

[60]  M. Calandra Chemically exfoliated single-layer MoS 2 : Stability, lattice dynamics, and catalytic adsorption from first principles , 2013, 1312.1702.