Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus

Aims:  We report extracellular synthesis of silver nanoparticles (Ag‐NPs) from Phoma glomerata and its efficacy against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The bacteria exhibiting resistance to various antibiotics showed remarkable sensitivity, when used in combination of antibiotics and Ag‐NPs.

[1]  Rajinder K. Gupta,et al.  Nanotechnology and Potential of Microorganisms , 2005, Critical reviews in biotechnology.

[2]  J.C. Chen,et al.  Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate , 2003, Letters in applied microbiology.

[3]  A. Bauer,et al.  Antibiotic susceptibility testing by a standardized single disk method. , 1966, American journal of clinical pathology.

[4]  Li Zhang,et al.  Green synthesis of silver nanoparticles using Capsicum annuum L. extract , 2007 .

[5]  F. Cui,et al.  A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. , 2000, Journal of biomedical materials research.

[6]  Absar Ahmad,et al.  BIOSYNTHESIS OF METAL NANOPARTICLES USING FUNGI AND ACTINOMYCETE , 2003 .

[7]  Balaprasad Ankamwar,et al.  Biological synthesis of triangular gold nanoprisms , 2004, Nature materials.

[8]  J. Banfield,et al.  Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. , 2000, Science.

[9]  M. Yacamán,et al.  The bactericidal effect of silver nanoparticles , 2005, Nanotechnology.

[10]  A. Soper,et al.  Nanosized strongly-magnetic bacterially-produced iron sulfide materials , 1999 .

[11]  M. Roco Nanotechnology: convergence with modern biology and medicine. , 2003, Current opinion in biotechnology.

[12]  Robert J. Lauf,et al.  Microbial synthesis and the characterization of metal-substituted magnetites , 2001 .

[13]  K. C. Bhainsa,et al.  Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. , 2006, Colloids and surfaces. B, Biointerfaces.

[14]  G. Southam,et al.  The occurrence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro , 1996 .

[15]  Oswaldo Luiz Alves,et al.  Antibacterial Effect of Silver Nanoparticles Produced by Fungal Process on Textile Fabrics and Their Effluent Treatment , 2007 .

[16]  C. Granqvist,et al.  Biologically Produced Silver–Carbon Composite Materials for Optically Functional Thin‐Film Coatings , 2000 .

[17]  A. Roberts,et al.  Structural and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced by sulphate-reducing bacteria , 2000 .

[18]  A. Ingle,et al.  Exploitation of Aspergillus niger for Synthesis of Silver Nanoparticles , 2008 .

[19]  Vipul Bansal,et al.  Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum , 2004 .

[20]  E. Baeuerlein Biomineralization : from biology to biotechnology and medical application , 2004 .

[21]  Dae Hong Jeong,et al.  Antimicrobial effects of silver nanoparticles. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[22]  Satyajyoti Senapati,et al.  Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. , 2005, Small.

[23]  T. Pradeep,et al.  Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains , 2002 .

[24]  R. Kumar,et al.  Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. , 2003 .

[25]  S. Basavaraja,et al.  Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum , 2008 .

[26]  M. Sastry Bioreduction of AuCl‐4 Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed. , 2001 .

[27]  Jiale Huang,et al.  Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf , 2007 .

[28]  R. Murray,et al.  Sites of metal deposition in the cell wall of Bacillus subtilis , 1980, Journal of bacteriology.

[29]  M. Kowshik,et al.  Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. , 2002, Biotechnology and bioengineering.

[30]  Keita Hara,et al.  Bactericidal Actions of a Silver Ion Solution on Escherichia coli, Studied by Energy-Filtering Transmission Electron Microscopy and Proteomic Analysis , 2005, Applied and Environmental Microbiology.

[31]  Leslie N Brown,et al.  Effect of gold(III) on the fouling diatom amphora coffeaeformis: Uptake, toxicity and interactions with copper , 1997 .

[32]  I. Maliszewska,et al.  Synthesis of silver nanoparticles using microorganisms , 2008 .

[33]  M. Steigerwald,et al.  Biosynthesis of cadmium sulphide quantum semiconductor crystallites , 1989, Nature.

[34]  A. Ingle,et al.  Mycosynthesis of Silver Nanoparticles Using the Fungus Fusarium acuminatum and its Activity Against Some Human Pathogenic Bacteria , 2008 .

[35]  Sudhakar R. Sainkar,et al.  BIOREDUCTION OF AUCL4− IONS BY THE FUNGUS, VERTICILLIUM SP. AND SURFACE TRAPPING OF THE GOLD NANOPARTICLES FORMED , 2001 .

[36]  C. Granqvist,et al.  Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. , 2001, Trends in biotechnology.

[37]  Ali Fakhimi,et al.  Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[38]  L. Luo,et al.  Large-scale fabrication of flexible silver/cross-linked poly(vinyl alcohol) coaxial nanocables by a facile solution approach. , 2005, Journal of the American Chemical Society.

[39]  Absar Ahmad,et al.  Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. , 2004, Journal of colloid and interface science.

[40]  Shiv Shankar,et al.  Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes , 2003 .

[41]  E Olsson,et al.  Silver-based crystalline nanoparticles, microbially fabricated. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[42]  I. Sondi,et al.  Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. , 2004, Journal of colloid and interface science.

[43]  Arnab Roy,et al.  Characterization of enhanced antibacterial effects of novel silver nanoparticles , 2007, Nanotechnology.

[44]  A. Philipse,et al.  Magnetic Colloids from Magnetotactic Bacteria: Chain Formation and Colloidal Stability , 2002 .

[45]  M. Kowshik,et al.  Microbial synthesis of semiconductor PbS nanocrystallites , 2002 .

[46]  Derek R. Lovley,et al.  Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism , 1987, Nature.

[47]  M. Kowshik,et al.  Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3 , 2002 .