Recent Developments in the Modeling, Analysis, and Numerics of Ferromagnetism

Micromagnetics is a continuum variational theory describing magnetization patterns in ferromagnetic media. Its multiscale nature due to different inherent spatiotemporal physical and geometric scales, together with nonlocal phenomena and a nonconvex side-constraint, leads to rich behavior and pattern formation. This variety of effects is also the reason for severe problems in analysis, model validation, reductions, and numerics, which have only recently been accessed and are reviewed in this work.

[1]  Mitchell Luskin,et al.  Minimum Energy Configurations for Liquid Crystals: Computational Results , 1987 .

[2]  Christof Melcher The logarithmic tail of Néel walls in thin films , 2001 .

[3]  William Fuller Brown,et al.  Magnetostatic principles in Ferromagnetism , 1962 .

[4]  Michael Struwe,et al.  Geometric evolution problems , 1995 .

[5]  Guo Boling,et al.  Global Weak Solution for the Landau–Lifshitz–Maxwell Equation in Three Space Dimensions , 1997 .

[6]  Carsten Carstensen,et al.  Effective simulation of a macroscopic model for stationary micromagnetics , 2005 .

[7]  T. Gilbert A Lagrangian Formulation of the Gyromagnetic Equation of the Magnetization Field , 1955 .

[8]  I. A. Privorotskii Thermodynamic theory of domain structures , 1976 .

[9]  Tomáš Roubíček,et al.  Specimen shape influence on hysteretic response of bulk ferromagnets , 2003 .

[10]  F. Pistella,et al.  A numerical study of a nonlinear system arising in modeling of ferromagnets , 2001 .

[11]  P. Pedregal Parametrized measures and variational principles , 1997 .

[12]  Augusto Visintin,et al.  On Landau-Lifshitz’ equations for ferromagnetism , 1985 .

[13]  Tomáš Roubíček,et al.  Microstructure evolution model in micromagnetics , 2004 .

[14]  Ding Shi-jin,et al.  Partial regularity for two dimensional Landau-Lifshitz equations , 1998 .

[15]  Antonio De Simone,et al.  Energy minimizers for large ferromagnetic bodies , 1993 .

[16]  Patrick Joly,et al.  On Transitions to Stationary States in a Maxwell-Landau-Lifschitz-Gilbert System , 2000, SIAM J. Math. Anal..

[17]  Andreas Prohl,et al.  Numerical analysis of relaxed micromagnetics by penalised finite elements , 2001, Numerische Mathematik.

[18]  Peter Monk,et al.  An eddy‐current and micromagnetism model with applicationsto disk write heads , 2004 .

[19]  Carsten Carstensen,et al.  Numerical approximation of young measuresin non-convex variational problems , 2000, Numerische Mathematik.

[20]  T. R. Koehler,et al.  Hybrid FEM-BEM method for fast micromagnetic calculations , 1997 .

[21]  Marián Slodička,et al.  An iterative approximation scheme for the Landau-Lifshitz-Gilbert equation , 2004 .

[22]  O. Vacus,et al.  Error Estimates for a Numerical Scheme for Ferromagnetic Problems , 1999 .

[23]  F. Alouges A New Algorithm For Computing Liquid Crystal Stable Configurations: The Harmonic Mapping Case , 1997 .

[24]  Robert V. Kohn,et al.  Two–dimensional modelling of soft ferromagnetic films , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  Martin Kružík Periodicity Properties of Solutions to a Hysteresis Model in Micromagnetics , 2004 .

[26]  Tomáš Roubíček,et al.  Relaxation in Optimization Theory and Variational Calculus , 1997 .

[27]  Markos A. Katsoulakis,et al.  Mesoscopic Modeling for Continuous Spin Lattice Systems: Model Problems and Micromagnetics Applications , 2005 .

[28]  Anthony Arrott,et al.  Introduction to the theory of ferromagnetism , 1996 .

[29]  François Alouges,et al.  On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness , 1992 .

[30]  Augusto Visintin,et al.  Modified Landau-Lifshitz equation for ferromagnetism , 1997 .

[31]  E Weinan,et al.  Effective dynamics for ferromagnetic thin films , 2001 .

[32]  Christof Melcher,et al.  Existence of Partially Regular Solutions for Landau–Lifshitz Equations in ℝ3 , 2005 .

[33]  Russell P. Cowburn,et al.  The attractions of magnetism for nanoscale data storage , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  Robert V. Kohn,et al.  Bounds on the Micromagnetic Energy of a Uniaxial Ferromagnet , 1998 .

[35]  François Alouges,et al.  Néel and Cross-Tie Wall Energies for Planar Micromagnetic Configurations , 2002 .

[36]  Andreas Prohl,et al.  Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows , 2003, Numerische Mathematik.

[37]  M. Kružík,et al.  Mesoscopic model for ferromagnets with isotropic hardening , 2005 .

[38]  S. Charap,et al.  Physics of magnetism , 1964 .

[39]  J. N. Chapman,et al.  Domain structures and switching mechanisms in patterned magnetic elements , 1997 .

[40]  Jalal Shatah,et al.  The stability of localized solutions of Landau‐Lifshitz equations , 2002 .

[41]  Tomáš Roubíček,et al.  Interactions between demagnetizing field and minor-loop development in bulk ferromagnets , 2004 .

[42]  Giuseppe Tomassetti,et al.  On the Evolution of Domain Walls in Hard Ferromagnets , 2004, SIAM J. Appl. Math..

[43]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[44]  Luis Vega,et al.  Small solutions to nonlinear Schrödinger equations , 1993 .

[45]  F. Murat,et al.  Compacité par compensation , 1978 .

[46]  Robert V. Kohn,et al.  A reduced theory for thin‐film micromagnetics , 2002 .

[47]  Shijin Ding,et al.  Initial-boundary value problem for higher dimensional landau–lifshitz systems , 2004 .

[48]  Robert V. Kohn,et al.  Magnetic microstructures - a paradigm of multiscale problems , 1999 .

[49]  Andreas Prohl,et al.  Stabilization methods in relaxed micromagnetism , 2005 .

[50]  M. Bertsch,et al.  On the dynamics of deformable ferromagnets , 2001 .

[51]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[52]  Andreas Prohl,et al.  Young measure approximation in micromagnetics , 2001, Numerische Mathematik.

[53]  Mitchell Luskin,et al.  Relaxation and gradient methods for molecular orientation in liquid crystals , 1989 .

[54]  Mitchell Luskin,et al.  Analysis of the finite element approximation of microstructure in micromagnetics , 1992 .

[55]  Robert V. Kohn,et al.  Domain Branching in Uniaxial Ferromagnets: A Scaling Law for the Minimum Energy , 1999 .

[56]  Antonio DeSimone,et al.  2-d stability of the Néel wall , 2006 .

[57]  A. Bergqvist,et al.  Magnetic vector hysteresis model with dry friction-like pinning , 1997 .

[58]  Paolo Podio-Guidugli,et al.  Existence of global-in-time weak solutions to a modified Gilbert equation , 2001 .

[59]  Roland Glowinski,et al.  APPLICATIONS OF OPERATOR SPLITTING METHODS TO THE NUMERICAL SOLUTION OF NONLINEAR PROBLEMS IN CONTINUUM MECHANICS AND PHYSICS , 1988 .

[60]  Sisto Baldo,et al.  Asymptotic behavior of the Landau—Lifshitz model of ferromagnetism , 1991 .

[61]  Claude Bardos,et al.  On the continuous limit for a system of classical spins , 1986 .

[62]  Boling Guo,et al.  The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps , 1993 .

[63]  A. Visintin Differential models of hysteresis , 1994 .

[64]  C. Truesdell,et al.  The Nonlinear Field Theories in Mechanics , 1968 .

[65]  A. Mielke,et al.  On rate-independent hysteresis models , 2004 .

[66]  P. Harpes,et al.  Uniqueness and bubbling of the 2-dimensional Landau-Lifshitz flow , 2004 .

[67]  JAMES STUART,et al.  A Treatise on Magnetism , 1871, Nature.

[68]  P. Pedregal,et al.  Relaxation in ferromagnetism: The rigid case , 1994 .

[69]  A. Mielke,et al.  A Variational Formulation of¶Rate-Independent Phase Transformations¶Using an Extremum Principle , 2002 .

[70]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[71]  San-Yih Lin,et al.  Relaxation methods for liquid crystal problems , 1989 .

[72]  David Kinderlehrer,et al.  Frustration in ferromagnetic materials , 1990 .

[73]  Thomas Schrefl,et al.  Micromagnetic modelling—the current state of the art , 2000 .

[74]  Sören Bartels,et al.  Stability and Convergence of Finite-Element Approximation Schemes for Harmonic Maps , 2005, SIAM J. Numer. Anal..

[75]  Harry Suhl,et al.  Thin‐film magnetic patterns in an external field , 1989 .

[76]  Andreas Prohl,et al.  Macroscopic modeling of magnetic hysteresis , 2002 .

[77]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[78]  Jean-Michel Coron,et al.  Nonuniqueness for the heat flow of harmonic maps , 1990 .

[79]  H. A. M. van den Berg,et al.  Self‐consistent domain theory in soft‐ferromagnetic media. II. Basic domain structures in thin‐film objects , 1986 .

[80]  E Weinan,et al.  Numerical Methods for the Landau-Lifshitz Equation , 2000, SIAM J. Numer. Anal..

[81]  F. Pistella,et al.  Numerical stability of a discrete model in the dynamics of ferromagnetic bodies , 1999 .

[82]  Ivan Cimrák,et al.  Error estimates for a semi-implicit numerical scheme solving the Landau-Lifshitz equation with an exchange field , 2005 .