Moments Tensors, Hilbert's Identity, and k-wise Uncorrelated Random Variables
暂无分享,去创建一个
Shuzhong Zhang | Zhening Li | Simai He | Bo Jiang | Shuzhong Zhang | B. Jiang | Simai He | Zhening Li
[1] W. J. Ellison. Waring's Problem , 1971 .
[2] Yuan Zhou,et al. Hypercontractivity, sum-of-squares proofs, and their applications , 2012, STOC '12.
[3] A. Joffe. On a Set of Almost Deterministic $k$-Independent Random Variables , 1974 .
[4] Aditya Bhaskara,et al. Approximating Matrixp-norms , 2011 .
[5] Julien M. Hendrickx,et al. Matrix p-Norms Are NP-Hard to Approximate If p!=q1, 2, INFINITY , 2010, SIAM J. Matrix Anal. Appl..
[6] C. Carathéodory. Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen , 1911 .
[7] Y. Nesterov. Random walk in a simplex and quadratic optimization over convex polytopes , 2003 .
[8] Aditya Bhaskara,et al. Approximating matrix p-norms , 2010, SODA '11.
[9] D. Hilbert,et al. Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n ter Potenzen (Waringsches Problem) , 1932 .
[10] Melvyn B. Nathanson,et al. Additive Number Theory The Classical Bases , 1996 .
[11] B. Reznick. Sums of Even Powers of Real Linear Forms , 1992 .
[12] D. Hilbert,et al. Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem). Dem Andenken an Hermann Minkowski gewidmet. , 1909 .
[13] Paul Pollack,et al. Central European Journal of Mathematics On Hilbert ’ s solution of Waring ’ s problem Research Article , 2011 .
[14] P. McMullen. A COURSE IN CONVEXITY (Graduate Studies in Mathematics 54) By ALEXANDER BARVINOK: 366 pp., US$59.00, ISBN 0-8218-2968-8 (American Mathematical Society, Providence, RI, 2002) , 2003 .
[15] Melvyn B. Nathanson,et al. Additive Number Theory , 1996 .
[16] Noga Alon,et al. A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.
[17] Daureen Steinberg. COMPUTATION OF MATRIX NORMS WITH APPLICATIONS TO ROBUST OPTIMIZATION , 2007 .
[18] Alexander Olshevsky,et al. Matrix P-norms are NP-hard to approximate if p ≠1,2,∞ , 2009 .
[19] Noga Alon,et al. Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.
[20] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.
[21] B. Reznick. Uniform denominators in Hilbert's seventeenth problem , 1995 .
[22] Y. Mansour,et al. On construction of k-wise independent random variables , 1994, STOC '94.
[23] N. Higham. Estimating the matrixp-norm , 1992 .