Sofware engneering challenges for machine learning applications: A literature review

[1]  Francisco Herrera,et al.  A survey on data preprocessing for data stream mining: Current status and future directions , 2017, Neurocomputing.

[2]  Jim Austin,et al.  Developing artificial neural networks for safety critical systems , 2006, Neural Computing and Applications.

[3]  Philip Koopman,et al.  Challenges in Autonomous Vehicle Testing and Validation , 2016 .

[4]  Miryung Kim,et al.  Data Scientists in Software Teams: State of the Art and Challenges , 2018, IEEE Transactions on Software Engineering.

[5]  David A. Clifton,et al.  A review of novelty detection , 2014, Signal Process..

[6]  Kewei Cheng,et al.  Feature Selection , 2016, ACM Comput. Surv..

[7]  Valerio Pascucci,et al.  Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.

[8]  Zoubin Ghahramani,et al.  Unifying linear dimensionality reduction , 2014, 1406.0873.

[9]  Maya Cakmak,et al.  Power to the People: The Role of Humans in Interactive Machine Learning , 2014, AI Mag..

[10]  HerreraFrancisco,et al.  A survey on data preprocessing for data stream mining , 2017 .

[11]  Koji Kashihara,et al.  Automatic design of an effective image filter based on an evolutionary algorithm for venous analysis , 2016, Network Modeling Analysis in Health Informatics and Bioinformatics.

[12]  Felix Bießmann,et al.  On Challenges in Machine Learning Model Management , 2018, IEEE Data Eng. Bull..

[13]  Raouf Boutaba,et al.  A comprehensive survey on machine learning for networking: evolution, applications and research opportunities , 2018, Journal of Internet Services and Applications.

[14]  Taghi M. Khoshgoftaar,et al.  A survey of transfer learning , 2016, Journal of Big Data.

[15]  Klaus-Dieter Thoben,et al.  Machine learning in manufacturing: advantages, challenges, and applications , 2016 .

[16]  Kai Petersen,et al.  Guidelines for conducting systematic mapping studies in software engineering: An update , 2015, Inf. Softw. Technol..

[17]  Jim Tørresen,et al.  A task-and-technique centered survey on visual analytics for deep learning model engineering , 2018, Comput. Graph..

[18]  Thomas G. Dietterich,et al.  Interacting meaningfully with machine learning systems: Three experiments , 2009, Int. J. Hum. Comput. Stud..

[19]  Ender Özcan,et al.  A review on the self and dual interactions between machine learning and optimisation , 2019, Progress in Artificial Intelligence.

[20]  Seth Flaxman,et al.  European Union Regulations on Algorithmic Decision-Making and a "Right to Explanation" , 2016, AI Mag..

[21]  Xue-wen Chen,et al.  Big Data Deep Learning: Challenges and Perspectives , 2014, IEEE Access.

[22]  Yurong Liu,et al.  A survey of deep neural network architectures and their applications , 2017, Neurocomputing.

[23]  João Gama,et al.  A survey on concept drift adaptation , 2014, ACM Comput. Surv..

[24]  Carla E. Brodley,et al.  Challenges and Opportunities in Applied Machine Learning , 2012, AI Mag..

[25]  Jan Peters,et al.  Model learning for robot control: a survey , 2011, Cognitive Processing.

[26]  Gang Luo,et al.  A review of automatic selection methods for machine learning algorithms and hyper-parameter values , 2016, Network Modeling Analysis in Health Informatics and Bioinformatics.

[27]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[28]  Stuart J. Russell,et al.  Research Priorities for Robust and Beneficial Artificial Intelligence , 2015, AI Mag..

[29]  Daniel S. Weld,et al.  The challenge of crafting intelligible intelligence , 2018, Commun. ACM.

[30]  Brett Browning,et al.  A survey of robot learning from demonstration , 2009, Robotics Auton. Syst..

[31]  Neoklis Polyzotis,et al.  Data Lifecycle Challenges in Production Machine Learning , 2018, SIGMOD Rec..

[32]  Foster J. Provost,et al.  Inactive learning?: difficulties employing active learning in practice , 2011, SKDD.

[33]  Bogdan Gabrys,et al.  Metalearning: a survey of trends and technologies , 2013, Artificial Intelligence Review.

[34]  Kush R. Varshney,et al.  On the Safety of Machine Learning: Cyber-Physical Systems, Decision Sciences, and Data Products , 2016, Big Data.