The Rosetta mission orbiter science overview: the comet phase

The international Rosetta mission was launched in 2004 and consists of the orbiter spacecraft Rosetta and the lander Philae. The aim of the mission is to map the comet 67P/Churyumov–Gerasimenko by remote sensing, and to examine its environment in situ and its evolution in the inner Solar System. Rosetta was the first spacecraft to rendezvous with and orbit a comet, accompanying it as it passes through the inner Solar System, and to deploy a lander, Philae, and perform in situ science on the comet's surface. The primary goals of the mission were to: characterize the comet's nucleus; examine the chemical, mineralogical and isotopic composition of volatiles and refractories; examine the physical properties and interrelation of volatiles and refractories in a cometary nucleus; study the development of cometary activity and the processes in the surface layer of the nucleus and in the coma; detail the origin of comets, the relationship between cometary and interstellar material and the implications for the origin of the Solar System; and characterize asteroids 2867 Steins and 21 Lutetia. This paper presents a summary of mission operations and science, focusing on the Rosetta orbiter component of the mission during its comet phase, from early 2014 up to September 2016. This article is part of the themed issue ‘Cometary science after Rosetta’.

[1]  S. Fuselier,et al.  Rosetta observations of solar wind interaction with the comet 67P/Churyumov-Gerasimenko , 2015 .

[2]  J. Lunine,et al.  The presence of clathrates in comet 67P/Churyumov-Gerasimenko , 2016, Science Advances.

[3]  K. Glassmeier,et al.  Two-point observations of low-frequency waves at 67P/Churyumov-Gerasimenko during the descent of PHILAE: comparison of RPCMAG and ROMAP , 2016 .

[4]  Eric Schindhelm,et al.  Far-UV phase dependence and surface characteristics of Comet 67P/Churyumov-Gerasimenko as observed with Rosetta Alice , 2015 .

[5]  J. Lebreton,et al.  Evolution of the ion environment of comet 67P/Churyumov-Gerasimenko - Observations between 3.6 and 2.0 AU , 2015 .

[6]  S. Debei,et al.  Orbital elements of the material surrounding comet 67P/Churyumov-Gerasimenko , 2015 .

[7]  T. Owen,et al.  Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature , 2015, Science.

[8]  U. Fink,et al.  Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko , 2016, Nature.

[9]  J. Lebreton,et al.  Observation of a new type of low-frequency waves at comet 67P/Churyumov-Gerasimenko , 2015, 1505.06068.

[10]  D. Bramich,et al.  Beginning of activity in 67P/Churyumov-Gerasimenko and predictions for 2014–2015 , 2013, 1307.7978.

[11]  C. Walsh Chemical complexity in protoplanetary disks in the era of ALMA and Rosetta , 2015, 1605.07825.

[12]  Gregory A Petsko The Rosetta Stone , 2001, Genome Biology.

[13]  S. Debei,et al.  Fractures on comet 67P/Churyumov‐Gerasimenko observed by Rosetta/OSIRIS , 2015 .

[14]  E. Palomba,et al.  GIADA: shining a light on the monitoring of the comet dust production from the nucleus of 67P/Churyumov-Gerasimenko , 2015 .

[15]  Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere , 2016 .

[16]  S. Debei,et al.  Search for satellites near comet 67P/Churyumov-Gerasimenko using Rosetta/OSIRIS images , 2015 .

[17]  M. Kaasalainen,et al.  A Portrait of the Nucleus of Comet 67P/Churyumov-Gerasimenko , 2007 .

[18]  J. Berthelier,et al.  Composition-dependent outgassing of comet 67P/Churyumov-Gerasimenko from ROSINA/DFMS - Implications for nucleus heterogeneity? , 2015 .

[19]  T. Owen,et al.  Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko , 2015, Science Advances.

[20]  J. Berthelier,et al.  HIGH-TIME RESOLUTION IN SITU INVESTIGATION OF MAJOR COMETARY VOLATILES AROUND 67P/C–G AT 3.1–2.3 au MEASURED WITH ROSINA-RTOF , 2016 .

[21]  K. Glassmeier Interaction of the solar wind with comets: a Rosetta perspective , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  D. Plettemeier,et al.  Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar , 2015, Science.

[23]  J. Berthelier,et al.  ROSINA/DFMS and IES observations of 67P: Ion-neutral chemistry in the coma of a weakly outgassing comet , 2015 .

[24]  Martin Rubin,et al.  Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA , 2015 .

[25]  Giampiero Naletto,et al.  EVOLUTION OF THE DUST SIZE DISTRIBUTION OF COMET 67P/CHURYUMOV–GERASIMENKO FROM 2.2 au TO PERIHELION , 2016 .

[26]  Y. Langevin,et al.  Typology of dust particles collected by the COSIMA mass spectrometer in the inner coma of 67P/Churyumov Gerasimenko , 2015 .

[27]  Giampiero Naletto,et al.  OSIRIS observations of meter-sized exposures of H2O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments , 2015 .

[28]  Wlodek Kofman,et al.  The Philae lander mission and science overview , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  S. Debei,et al.  Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument onboard Rosetta , 2015 .

[30]  Karl Battams,et al.  SOHO comets: 20 years and 3000 objects later , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  A. Fitzsimmons,et al.  The nucleus of Comet 67P/Churyumov-Gerasimenko. A new shape model and thermophysical analysis , 2012 .

[32]  M. T. Capria,et al.  Photometric properties of comet 67P/Churyumov-Gerasimenko from VIRTIS-M onboard Rosetta , 2015 .

[33]  S. Debei,et al.  Characterization of the Abydos region through OSIRIS high-resolution images in support of CIVA measurements , 2016 .

[34]  S. Debei,et al.  Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft , 2015, 1505.06888.

[35]  Hans Rickman,et al.  Comets as collisional fragments of a primordial planetesimal disk , 2015, 1504.04512.

[36]  H. Hsieh,et al.  Asteroid–comet continuum objects in the solar system , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  S. Debei,et al.  Rotating dust particles in the coma of comet 67P/Churyumov-Gerasimenko , 2015 .

[38]  A. Hubault,et al.  Rosetta following a living comet , 2016 .

[39]  A. Hubault,et al.  Rosetta operations at the comet , 2015 .

[40]  S. Debei,et al.  Physical properties and dynamical relation of the circular depressions on comet 67P/Churyumov-Gerasimenko , 2016 .

[41]  Giampiero Naletto,et al.  Morphology and dynamics of the jets of comet 67P/Churyumov-Gerasimenko: Early-phase development , 2015 .

[42]  Ian Wright,et al.  Low CO/CO 2 ratios of comet 67P measured at the Abydos landing site by the Ptolemy mass spectrometer , 2015 .

[43]  J. Berthelier,et al.  Rosetta mission results pre-perihelion Special feature Comparison of 3 D kinetic and hydrodynamic models to ROSINA-COPS measurements of the neutral coma of 67 P / Churyumov-Gerasimenko , 2015 .

[44]  A. Ercoli Finzi,et al.  Philae's First Days on the Comet , 2015, Science.

[45]  K. Meech Setting the scene: what did we know before Rosetta? , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  G. Clark,et al.  Suprathermal electron environment of comet 67P/Churyumov-Gerasimenko: Observations from the Rosetta Ion and Electron Sensor , 2015 .

[47]  S. Debei,et al.  Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko , 2015 .

[48]  Hans-Herbert Fischer,et al.  Dust Impact Monitor (SESAME-DIM) on board Rosetta/Philae: MIllimetric particle flux at comet 67P/Churyumov-Gerasimenko , 2016, 1605.06291.

[49]  S. Debei,et al.  Geomorphology and spectrophotometry of Philae’s landing site on comet 67P/Churyumov-Gerasimenko , 2015 .

[50]  E. Grün,et al.  Unexpected and significant findings in comet 67P/Churyumov–Gerasimenko: an interdisciplinary view , 2016 .

[51]  A. Fitzsimmons,et al.  Distant activity of 67P/Churyumov-Gerasimenko in 2014: Ground-based results during the Rosetta pre-landing phase , 2016, 1602.01493.

[52]  N. Biver,et al.  The composition of cometary ices , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[53]  S. Debei,et al.  Observations and analysis of a curved jet in the coma of comet 67P/Churyumov-Gerasimenko , 2016, 1605.02095.

[54]  E. Grün,et al.  DENSITY AND CHARGE OF PRISTINE FLUFFY PARTICLES FROM COMET 67P/CHURYUMOV–GERASIMENKO , 2015 .

[55]  F. Scholten,et al.  The structure of the regolith on 67P/Churyumov-Gerasimenko from ROLIS descent imaging , 2015, Science.

[56]  S. Debei,et al.  Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations , 2015, 1509.02707.

[57]  S. Debei,et al.  Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun , 2015, Science.

[58]  Harry Lehto,et al.  Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years , 2015, Nature.

[59]  E. Grün,et al.  High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko , 2016, Nature.

[60]  S. Debei,et al.  The morphological diversity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[61]  Nicolas Thomas,et al.  REDISTRIBUTION OF PARTICLES ACROSS THE NUCLEUS OF COMET 67P/CHURYUMOV-GERASIMENKO , 2016 .

[62]  N. Thomas,et al.  Permittivity measurements of porous matter in support of investigations of the surface and interior of 67P/Churyumov-Gerasimenko , 2015, Astronomy & Astrophysics.

[63]  N. Thomas,et al.  PITS FORMATION FROM VOLATILE OUTGASSING ON 67P/CHURYUMOV–GERASIMENKO , 2015, 1510.07671.

[64]  T. Cravens,et al.  Charge exchange in cometary coma: Discovery of H− ions in the solar wind close to comet 67P/Churyumov‐Gerasimenko , 2015, Geophysical research letters.

[65]  Giampiero Naletto,et al.  Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko Stereo-photogrammetric analysis of Rosetta/OSIRIS image data , 2015 .

[66]  D. Plettemeier,et al.  CONSERT suggests a change in local properties of 67P/Churyumov-Gerasimenko's nucleus at depth , 2015 .

[67]  S. Debei,et al.  Possible interpretation of the precession of comet 67P/Churyumov-Gerasimenko , 2016 .

[68]  A. Rahmati,et al.  The Rosetta Ion and Electron Sensor (IES) measurement of the development of pickup ions from comet 67P/Churyumov‐Gerasimenko , 2014 .

[69]  Jean-Pierre Lebreton,et al.  Birth of a comet magnetosphere: A spring of water ions , 2015, Science.

[70]  H. Keller,et al.  The changing rotation period of comet 67P/Churyumov-Gerasimenko controlled by its activity , 2015 .

[71]  I. I. Shapiro,et al.  The first results , 1979 .

[72]  F. Scholten,et al.  The landing(s) of Philae and inferences about comet surface mechanical properties , 2015, Science.

[73]  D. J. Andrews,et al.  CHO-bearing organic compounds at the surface of 67P/Churyumov-Gerasimenko revealed by Ptolemy , 2015, Science.

[74]  T. Gombosi,et al.  Observation of charged nanograins at comet 67P/Churyumov‐Gerasimenko , 2015 .

[75]  J. Gerring A case study , 2011, Technology and Society.

[76]  S. Debei,et al.  The primordial nucleus of comet 67P/Churyumov-Gerasimenko , 2015 .

[77]  U. Fink,et al.  The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta , 2015, Science.

[78]  Eric Schindhelm,et al.  First extreme and far ultraviolet spectrum of a Comet Nucleus: Results from 67P/Churyumov-Gerasimenko , 2015 .

[79]  S. Erard,et al.  Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer , 2016 .

[80]  K. Glassmeier,et al.  Dynamical features and spatial structures of the plasma interaction region of 67P/Churyumov–Gerasimenko and the solar wind , 2015 .

[81]  H. Keller,et al.  What drives the dust activity of comet 67P/Churyumov-Gerasimenko? , 2015, 1506.08545.

[82]  S. Debei,et al.  Sunset jets observed on comet 67P/Churyumov-Gerasimenko sustained by subsurface thermal lag , 2016 .

[83]  B. Marty,et al.  Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission , 2016 .

[84]  Hans-Herbert Fischer,et al.  Electrical properties and porosity of the first meter of the nucleus of 67P/Churyumov-Gerasimenko - As constrained by the Permittivity Probe SESAME-PP/Philae/Rosetta , 2016, 1604.03678.

[85]  M. A’Hearn,et al.  Comets: looking ahead , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[86]  T. Encrenaz,et al.  Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[87]  F. Scholten,et al.  Modelling observations of the inner gas and dust coma of comet 67P/Churyumov-Gerasimenko using ROSINA/COPS and OSIRIS data: First results , 2016 .

[88]  S. Debei,et al.  Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko , 2015 .

[89]  M. Banaszkiewicz,et al.  Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[90]  I. Richter,et al.  Mass loading at 67P/Churyumov‐Gerasimenko: A case study , 2016, 1805.05587.

[91]  S. Debei,et al.  Comparative study of water ice exposures on cometary nuclei using multispectral imaging data , 2016 .

[92]  S. Debei,et al.  Rosetta mission results pre-perihelion Special feature Comet 67 P / Churyumov-Gerasimenko : Constraints on its origin from OSIRIS observations , 2015 .

[93]  S. Erard,et al.  Three-dimensional direct simulation Monte-Carlo modeling of the coma of comet 67P/Churyumov-Gerasimenko observed by the VIRTIS and ROSINA instruments on board Rosetta , 2016 .

[94]  Jean-Michel Reess,et al.  First observations of H2O and CO2 vapor in comet 67P/Churyumov-Gerasimenko made by VIRTIS onboard Rosetta , 2015 .

[95]  N. Edberg,et al.  Suprathermal electrons near the nucleus of comet 67P/Churyumov‐Gerasimenko at 3 AU: Model comparisons with Rosetta data , 2016 .

[96]  K. Glassmeier,et al.  The Rosetta Mission: Flying Towards the Origin of the Solar System , 2007 .

[97]  M. Hilchenbach,et al.  COSIMA calibration for the detection and characterization of the cometary solid organic matter , 2015 .

[98]  Giampiero Naletto,et al.  The rotation state of 67P/Churyumov-Gerasimenko from approach observations with the OSIRIS cameras on Rosetta , 2014 .

[99]  J. Berthelier,et al.  Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko , 2015 .

[100]  J. De Keyser,et al.  Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko , 2015, Nature.

[101]  J Ginsburg,et al.  Looking Ahead , 2011, Metabolism: clinical and experimental.

[102]  Eric Schindhelm,et al.  THE NATURE AND FREQUENCY OF THE GAS OUTBURSTS IN COMET 67P/CHURYUMOV–GERASIMENKO OBSERVED BY THE ALICE FAR-ULTRAVIOLET SPECTROGRAPH ON ROSETTA , 2016, 1606.05249.

[103]  I. Mann Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[104]  C. Snodgrass,et al.  Optical observations of comet 67P/Churyumov-Gerasimenko with the Nordic Optical Telescope - Comet activity before the solar conjunction , 2015 .

[105]  Giuseppe Piccioni,et al.  Water and carbon dioxide distribution in the 67P/Churyumov-Gerasimenko coma from VIRTIS-M infrared observations , 2016 .

[106]  C. Andrews,et al.  The Rosetta Stone , 1981 .

[107]  S. Debei,et al.  The dust environment of comet 67P/Churyumov-Gerasimenko from Rosetta OSIRIS and VLT observations in the 4.5 to 2.9 AU heliocentric distance range inbound , 2016, 1602.01965.

[108]  W. Ip,et al.  Distribution of water around the nucleus of comet 67P/Churyumov-Gerasimenko at 3.4 AU from the Sun as seen by the MIRO instrument on Rosetta , 2015 .

[109]  Claire Vallat,et al.  The science planning process on the Rosetta mission , 2017 .

[110]  E. Neefs,et al.  67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio , 2015, Science.

[111]  S. Debei,et al.  Summer fireworks on comet 67P , 2016, 1609.07743.

[112]  Giampiero Naletto,et al.  The 2016 Feb 19 outburst of comet 67P/CG: an ESA Rosetta multi-instrument study , 2016 .

[113]  Claire Vallat,et al.  Rosetta science operations in support of the Philae mission , 2016 .

[114]  H. Leroux,et al.  Variations in cometary dust composition from Giotto to Rosetta, clues to their formation mechanisms , 2016 .

[115]  T. Guillot,et al.  A PROTOSOLAR NEBULA ORIGIN FOR THE ICES AGGLOMERATED BY COMET 67P/CHURYUMOV–GERASIMENKO , 2016, 1604.08827.

[116]  Umd,et al.  Measurements of the near-nucleus coma of comet 67P/Churyumov-Gerasimenko with the Alice far-ultraviolet spectrograph on Rosetta , 2015, 1506.01203.

[117]  Zhong-Yi Lin,et al.  67P/Churyumov-Gerasimenko activity evolution during its last perihelion before the Rosetta encounter , 2011 .

[118]  S. Debei,et al.  67P/Churyumov-Gerasimenko: Activity between March and June 2014 as observed from Rosetta/OSIRIS , 2015 .

[119]  Andrew Steele,et al.  Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry , 2015, Science.

[120]  E. Kührt,et al.  Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko , 2015, Science.

[121]  S. Debei,et al.  Temporal morphological changes in the Imhotep region of comet 67P/Churyumov-Gerasimenko , 2015, 1509.02794.

[122]  Paul Hartogh,et al.  Spatial and diurnal variation of water outgassing on comet 67P/Churyumov-Gerasimenko observed from Rosetta/MIRO in August 2014 , 2015 .

[123]  Sukhan Lee,et al.  Rosetta mission results pre-perihelion Special feature Dark side of comet 67 P / Churyumov-Gerasimenko in Aug . – Oct . 2014 MIRO / Rosetta continuum observations of polar night in the southern regions , 2015 .

[124]  K. Manos In the Southern Hemisphere , 1993 .

[125]  J. Bertaux Estimate of the erosion rate from H 2 O mass-loss measurements from SWAN/SOHO in previous perihelions of comet 67P/Churyumov-Gerasimenko and connection with observed rotation rate variations , 2015 .

[126]  H. Keller,et al.  MIRO observations of subsurface temperatures of the nucleus of 67P/Churyumov-Gerasimenko , 2015 .

[127]  Masanori Kobayashi,et al.  Dust Impact Monitor (SESAME-DIM) Measurements at Comet 67P/Churyumov-Gerasimenko , 2015, 1510.01563.

[128]  J. Lebreton,et al.  RPC observation of the development and evolution of plasma interaction boundaries at 67P/Churyumov-Gerasimenko , 2016 .

[129]  T. Owen,et al.  Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko , 2016, Science Advances.

[130]  S. Debei,et al.  On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[131]  S. Debei,et al.  Are fractured cliffs the source of cometary dust jets ? insights from OSIRIS/Rosetta at 67P/Churyumov-Gerasimenko , 2015, 1512.03193.

[132]  F. Scholten,et al.  A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field , 2016, Nature.

[133]  C. Russell,et al.  The nonmagnetic nucleus of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[134]  Paul Hartogh,et al.  Ocean-like water in the Jupiter-family comet 103P/Hartley 2 , 2011, Nature.

[135]  C. Pilorget,et al.  67P/Churyumov-Gerasimenko surface properties as derived from CIVA panoramic images , 2015, Science.

[136]  S. Debei,et al.  Aswan site on comet 67P/Churyumov-Gerasimenko: Morphology, boulder evolution, and spectrophotometry , 2016 .

[137]  S. Debei,et al.  Rosetta mission results pre-perihelion Special feature Regional surface morphology of comet 67 P / Churyumov-Gerasimenko from Rosetta / OSIRIS images ? , 2015 .

[138]  E. Grün,et al.  Characteristics of the dust trail of 67P/Churyumov-Gerasimenko: an application of the IMEX model , 2015 .

[139]  S. Erard,et al.  The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko , 2015, Nature.

[140]  S. Debei,et al.  Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse , 2015, Nature.

[141]  E. Cupido,et al.  Evolution of the plasma environment of comet 67P from spacecraft potential measurements by the Rosetta Langmuir probe instrument , 2015 .

[142]  Luigi Colangeli,et al.  COMET 67P/CHURYUMOV–GERASIMENKO: CLOSE-UP ON DUST PARTICLE FRAGMENTS , 2016 .

[143]  Anders Eriksson,et al.  First detection of a diamagnetic cavity at comet 67P/Churyumov-Gerasimenko , 2016 .

[144]  S. Debei,et al.  Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations , 2015 .

[145]  J. Berthelier,et al.  Sulphur-bearing species in the coma of comet 67P/Churyumov–Gerasimenko , 2016 .

[146]  M. Horányi,et al.  Negatively charged nano-grains at 67P/Churyumov-Gerasimenko , 2015 .

[147]  K. Varmuza,et al.  Mechanical and electrostatic experiments with dust particles collected in the inner coma of comet 67P by COSIMA onboard Rosetta , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[148]  Daniel J. Scheeres,et al.  Fission and reconfiguration of bilobate comets as revealed by 67P/Churyumov–Gerasimenko , 2016, Nature.

[149]  S. Debei,et al.  Photometry of dust grains of comet 67P and connection with nucleus regions , 2016 .

[150]  J. Kissel,et al.  Searching for calcium‐aluminum‐rich inclusions in cometary particles with Rosetta/COSIMA , 2016 .

[151]  S. Debei,et al.  The southern hemisphere of 67P/Churyumov-Gerasimenko: Analysis of the preperihelion size-frequency distribution of boulders ≥7 m , 2016 .

[152]  Eric Quémerais,et al.  The water production rate of Rosetta target Comet 67P/Churyumov–Gerasimenko near perihelion in 1996, 2002 and 2009 from Lyman α observations with SWAN/SOHO , 2014 .

[153]  T. Owen,et al.  D2O and HDS in the coma of 67P/Churyumov–Gerasimenko , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[154]  S. Debei,et al.  Variegation of comet 67P/Churyumov-Gerasimenko in regions showing activity , 2016 .

[155]  J. Lebreton,et al.  Spatial distribution of low‐energy plasma around comet 67P/CG from Rosetta measurements , 2015, 1608.06745.

[156]  S. Debei,et al.  Two independent and primitive envelopes of the bilobate nucleus of comet 67P , 2015, Nature.

[157]  R. Schulz,et al.  The 67P/Churyumov–Gerasimenko observation campaign in support of the Rosetta mission , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.