Fulleropyrrolidinium Iodide As an Efficient Electron Transport Layer for Air-Stable Planar Perovskite Solar Cells.

Organic-inorganic halide perovskite solar cells have attracted great attention in recent years. But there are still a lot of unresolved issues related to the perovskite solar cells such as the phenomenon of anomalous hysteresis characteristics and long-term stability of the devices. Here, we developed a simple three-layered efficient perovskite device by replacing the commonly employed PCBM electrical transport layer with an ultrathin fulleropyrrolidinium iodide (C60-bis) in an inverted p-i-n architecture. The devices with an ultrathin C60-bis electronic transport layer yield an average power conversion efficiency of 13.5% and a maximum efficiency of 15.15%. Steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements show that the high performance is attributed to the efficient blocking of holes and high extraction efficiency of electrons by C60-bis, due to a favorable energy level alignment between the CH3NH3PbI3 and the Ag electrodes. The hysteresis effect and stability of our perovskite solar cells with C60-bis become better under indoor humidity conditions.

[1]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[2]  Konrad Wojciechowski,et al.  C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[3]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[4]  Yang Yang,et al.  Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[5]  Alex K.-Y. Jen,et al.  Roles of Fullerene‐Based Interlayers in Enhancing the Performance of Organometal Perovskite Thin‐Film Solar Cells , 2015 .

[6]  A. Jen,et al.  Effective interfacial layer to enhance efficiency of polymer solar cells via solution-processed fullerene-surfactants , 2012 .

[7]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[8]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[9]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[10]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[11]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[12]  Sung Cheol Yoon,et al.  Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p‐Type NiO Electrode Formed by a Pulsed Laser Deposition , 2015, Advanced materials.

[13]  Feng Gao,et al.  Organometal Halide Perovskites for Photovoltaic Applications , 2015 .

[14]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[15]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[16]  G. Lanzani,et al.  Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells , 2012 .

[17]  Deren Yang,et al.  Ambient Engineering for High-Performance Organic-Inorganic Perovskite Hybrid Solar Cells. , 2016, ACS applied materials & interfaces.

[18]  Seong Sik Shin,et al.  Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature , 2015 .

[19]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[20]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[21]  Tingting Shi,et al.  Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance , 2014, Advanced materials.

[22]  Henry J. Snaith,et al.  Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites , 2015, 1504.07025.

[23]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[24]  M. Ikegami,et al.  Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media , 2012 .

[25]  Namchul Cho,et al.  High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer , 2015, Advanced materials.

[26]  Antonio Abate,et al.  Perovskite Solar Cells Go Lead Free , 2017 .

[27]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[28]  A. Jen,et al.  Enhanced Open‐Circuit Voltage in High Performance Polymer/Fullerene Bulk‐Heterojunction Solar Cells by Cathode Modification with a C60 Surfactant , 2012 .

[29]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[30]  A. Jen,et al.  Large Grained Perovskite Solar Cells Derived from Single-Crystal Perovskite Powders with Enhanced Ambient Stability. , 2016, ACS applied materials & interfaces.

[31]  Yu-Cheng Chang,et al.  p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells , 2014, Scientific Reports.

[32]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[33]  Garry Rumbles,et al.  Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.

[34]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[35]  Fan Zuo,et al.  Binary‐Metal Perovskites Toward High‐Performance Planar‐Heterojunction Hybrid Solar Cells , 2014, Advanced materials.

[36]  Kwanghee Lee,et al.  Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer , 2014 .

[37]  F. So,et al.  High‐Efficiency Solution‐Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer , 2015 .

[38]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[39]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[40]  Kai Zhu,et al.  Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers , 2016 .

[41]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[42]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[43]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[44]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[45]  A. Jen,et al.  Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene Cathode Interlayer , 2016, Advanced science.

[46]  A. Jen,et al.  Toward High‐Performance Semi‐Transparent Polymer Solar Cells: Optimization of Ultra‐Thin Light Absorbing Layer and Transparent Cathode Architecture , 2013 .

[47]  Yun-Chorng Chang,et al.  Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells , 2014, Advanced materials.

[48]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.