Role of environmental factors on the structure and spectroscopic response of 5'-DNA-porphyrin conjugates caused by changes in the porphyrin-porphyrin interactions.

We have explored the utility, strength, and limitation of through-space exciton-coupled circular dichroism in determination of the secondary structure of optically active chromophoric nanoarrays using the example of end-capped porphyrin- and metalloporphyrin-oligodeoxynucleotide conjugates. We put special emphasis on the explanation of the origin and significance of the distinctive multiple bands in the CD spectra (trisignate and tetrasignate CD bands). Such CD profiles are often observed in chiral aggregates or multichromophoric arrays but have never before been studied in detail. We found that variation of temperature and ionic strength has a profound effect on the geometry of the porphyrin-DNA conjugates and thus the nature of electronic interactions. At lower temperatures and in the absence of NaCl all three 5'-DNA-porphyrin conjugates display negative bisignate CD exciton couplets of variable intensity in the Soret region resulting from through-space interaction between the electric transition dipole moments of the two end-capped porphyrins. As the temperature is raised these exciton couplets are transformed into single positive bands originating from the porphyrin-single-strand DNA interactions. At higher ionic strengths and low temperatures, multisignate CD bands are observed in the porphyrin Soret region. These CD signature bands originate from a combination of intermolecular, end-to-end porphyrin-porphyrin stacking between duplexes and porphyrin-DNA interactions. The intermolecular aggregation was confirmed by fluorescence and absorption spectroscopy and resonance light scattering. DeVoe theoretical CD calculations, in conjunction with molecular dynamics simulations and Monte Carlo conformational searches, were used to mimic the observed bisignate exciton-coupled CD spectra as well as multiple CD bands. Calculations correctly predicted the sign and shape of the experimentally observed CD spectra. These studies reveal that the exciton-coupled circular dichroism is a very useful technique for the determination of the structure of optically active arrays.

[1]  R. Häner,et al.  DNA-assisted self-assembly of pyrene foldamers. , 2009, Chemistry.

[2]  M. Wasielewski,et al.  Hydrophobic dimerization and thermal dissociation of perylenediimide-linked DNA hairpins. , 2009, Journal of the American Chemical Society.

[3]  Penglei Chen,et al.  Controllable fabrication of supramolecular nanocoils and nanoribbons and their morphology-dependent photoswitching. , 2009, Journal of the American Chemical Society.

[4]  T. Kupfer,et al.  Axially chiral beta,beta'-bisporphyrins: synthesis and configurational stability tuned by the central metals. , 2008, Journal of the American Chemical Society.

[5]  Stefan C J Meskers,et al.  The mechanism of long-range exciton diffusion in a nematically organized porphyrin layer. , 2008, Journal of the American Chemical Society.

[6]  K. Nakanishi,et al.  Synthesis and characterization of water-soluble free-base, zinc and copper porphyrin-oligonucleotide conjugates. , 2008, Bioorganic & medicinal chemistry.

[7]  R. Häner,et al.  Triazolylpyrenes: synthesis, fluorescence properties, and incorporation into DNA. , 2008, Organic letters.

[8]  P. Bouř,et al.  Ab initio modeling of the electronic circular dichroism induced in porphyrin chromophores. , 2008, The journal of physical chemistry. A.

[9]  H. Wagenknecht,et al.  Perylene bisimide dimers as fluorescent "glue" for DNA and for base-mismatch detection. , 2008, Angewandte Chemie.

[10]  H. Wagenknecht,et al.  Perylenbisimid‐Dimere als fluoreszenter “Klebstoff” für DNA und zum Nachweis von Basenfehlpaarungen , 2008 .

[11]  R. Dror,et al.  Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins. , 2008, The journal of physical chemistry. B.

[12]  G. Scholes Insights into excitons confined to nanoscale systems: electron-hole interaction, binding energy, and photodissociation. , 2008, ACS nano.

[13]  T. Majima,et al.  Diastereochemically controlled porphyrin dimer formation on a DNA duplex scaffold. , 2008, The Journal of organic chemistry.

[14]  E. W. Meijer,et al.  Star-shaped oligo(p-phenylenevinylene) substituted hexaarylbenzene: purity, stability, and chiral self-assembly. , 2007, Journal of the American Chemical Society.

[15]  E. Stulz,et al.  DNA as supramolecular scaffold for porphyrin arrays on the nanometer scale. , 2007, Journal of the American Chemical Society.

[16]  T. Aida,et al.  Spectroscopic visualization of vortex flows using dye-containing nanofibers. , 2007, Angewandte Chemie.

[17]  T. Aida,et al.  Amplified chiral transformation through helical assembly. , 2007, Angewandte Chemie.

[18]  D. McMillin,et al.  DNA binding studies of a new dicationic porphyrin. Insights into interligand interactions. , 2007, Biochemistry.

[19]  E. W. Meijer,et al.  Influence of supramolecular organization on energy transfer properties in chiral oligo(p-phenylene vinylene) porphyrin assemblies. , 2007, Journal of the American Chemical Society.

[20]  R. Häner,et al.  Helical arrangement of interstrand stacked pyrenes in a DNA framework. , 2007, Angewandte Chemie.

[21]  N. Berova,et al.  Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. , 2007, Chemical Society reviews.

[22]  R. Paolesse,et al.  Chiral amplification of chiral porphyrin derivatives by templated heteroaggregation. , 2007, Journal of the American Chemical Society.

[23]  E. W. Meijer,et al.  ssDNA templated self-assembly of chromophores. , 2007, Journal of the American Chemical Society.

[24]  P. Štěpánek,et al.  Synthesis and solvent driven self-aggregation studies of meso-"C-glycoside"-porphyrin derivatives. , 2007, Organic & biomolecular chemistry.

[25]  Takaharu Mori,et al.  Estimation of dye configuration from conventional chiroptical spectra of porphyrin integrates: combination of exciton theory with Monte Carlo molecular structural simulation. , 2007, The journal of physical chemistry. A.

[26]  K. Nakanishi,et al.  Porphyrins as spectroscopic sensors for conformational studies of DNA , 2007 .

[27]  E. W. Meijer,et al.  Molecular-level helical stack of a nucleotide-appended oligo(p-phenylenevinylene) directed by supramolecular self-assembly with a complementary oligonucleotide as a template. , 2006, Journal of the American Chemical Society.

[28]  Garry Rumbles,et al.  Excitons in nanoscale systems , 2006, Nature materials.

[29]  S. Jockusch,et al.  Tetraarylporphyrin as a selective molecular cap for non-Watson-Crick guanine-adenine base-pair sequences. , 2006, Angewandte Chemie.

[30]  T. Kawabata,et al.  Long-range exciton-coupled circular dichroism: application for determination of the absolute configuration of oligonaphthalenes. , 2006, Organic letters.

[31]  H. Wagenknecht,et al.  Strukturempfindlicher und selbstassoziierter helicaler Pyrenstapel auf Basis der DNA‐Architektur , 2006 .

[32]  H. Wagenknecht,et al.  Structure-sensitive and self-assembled helical pyrene array based on DNA architecture. , 2006, Angewandte Chemie.

[33]  K. Nakanishi,et al.  Porphyrins conjugated to DNA as CD reporters of the salt-induced B to Z-DNA transition. , 2006, Organic & biomolecular chemistry.

[34]  C. Rosini,et al.  Flexible biphenyl chromophore as a circular dichroism probe for assignment of the absolute configuration of carboxylic acids. , 2006, Journal of the American Chemical Society.

[35]  E. Yashima,et al.  Assisted formation of chiral porphyrin homoaggregates by an induced helical poly(phenylacetylene) template and their chiral memory. , 2006, Angewandte Chemie.

[36]  N. Berova,et al.  5'-Porphyrin-oligonucleotide conjugates: neutral porphyrin-DNA interactions. , 2005, Organic letters.

[37]  Z. S. Yoon,et al.  Excitonic Coupling in Covalently Linked Multiporphyrin Systems by Matrix Diagonalization , 2005 .

[38]  J. Tabei,et al.  Determination of Helical Sense of Poly(N-propargylamides) by Exciton-Coupled Circular Dichroism , 2005 .

[39]  George C Schatz,et al.  DNA as helical ruler: exciton-coupled circular dichroism in DNA conjugates. , 2005, Journal of the American Chemical Society.

[40]  K. Volka,et al.  Circular dichroism spectroscopic study of non‐covalent interactions of poly‐L‐glutamic acid with a porphyrin derivative in aqueous solutions , 2005, Journal of peptide science : an official publication of the European Peptide Society.

[41]  R. Purrello,et al.  Induction and memory of chirality in porphyrin hetero-aggregates: the role of the central metal ion. , 2005, Bioorganic & medicinal chemistry.

[42]  Andrea E. Holmes,et al.  A cationic zinc porphyrin as a chiroptical probe for Z-DNA. , 2005, Angewandte Chemie.

[43]  Andrea E. Holmes,et al.  Synthesis and circular dichroism of tetraarylporphyrin-oligonucleotide conjugates. , 2005, Journal of the American Chemical Society.

[44]  Seog K. Kim,et al.  Stacking of meso-Tetrakis(3-N-methylpyridiniumyl)porphyrin on Poly[d(A-T)2]: Importance of the Distance between Porphyrin's Positive Charges , 2004 .

[45]  P. Kubát,et al.  meso‐Tetratolylporphyrins substituted by pyridinium groups: aggregation, photophysical properties and complexation with DNA , 2004 .

[46]  B. Armitage,et al.  DNA-templated assembly of helical cyanine dye aggregates: a supramolecular chain polymerization. , 2004, Accounts of chemical research.

[47]  T. Balaban,et al.  Green Self‐Assembling Porphyrins and Chlorins as Mimics of the Natural Bacteriochlorophylls c, d, and e , 2004 .

[48]  Cees Otto,et al.  The native architecture of a photosynthetic membrane , 2004, Nature.

[49]  M. Wasielewski,et al.  DNA-mediated exciton coupling and electron transfer between donor and acceptor stilbenes separated by a variable number of base pairs. , 2004, Journal of the American Chemical Society.

[50]  X. Zuo,et al.  Stepwise evolution of the structure and electronic properties of DNA. , 2003, Journal of the American Chemical Society.

[51]  N. Berova,et al.  Theoretical analysis of the porphyrin-porphyrin exciton interaction in circular dichroism spectra of dimeric tetraarylporphyrins. , 2003, Journal of the American Chemical Society.

[52]  T. Balaban,et al.  Controlling chirality and optical properties of artificial antenna systems with self-assembling porphyrins. , 2003, Angewandte Chemie.

[53]  R. Purrello,et al.  From achiral porphyrins to template-imprinted chiral aggregates and further. Self-replication of chiral memory from scratch. , 2002, Journal of the American Chemical Society.

[54]  J. Davies,et al.  Product-Induced Distortion of a Metalloporphyrin Host: Implications for Acceleration of Diels−Alder Reactions , 2000 .

[55]  G. Beddard Exciton Coupling in the Photosystem I Reaction Center , 1998 .

[56]  R. Purrello,et al.  Template-Imprinted Chiral Porphyrin Aggregates , 1998 .

[57]  R. Purrello,et al.  pH Modulation of Porphyrins Self-Assembly onto Polylysine , 1998 .

[58]  R. Purrello,et al.  Chiral H- and J-Type Aggregates of meso-Tetrakis(4-sulfonatophenyl)porphine on alpha-Helical Polyglutamic Acid Induced by Cationic Porphyrins. , 1998, Inorganic chemistry.

[59]  S. Shinkai,et al.  Molecular Design of Highly Selective and Sensitive “Sugar Tweezers” from Boronic Acid-Appended μ-Oxo-bis[porphinatoiron(III)]s , 1998 .

[60]  C. Rosini,et al.  Circular dichroism spectra (350–185 nm) of a new series of 4-substituted [2.2]paracyclophanes: A quantitative analysis within the DeVoe polarizability model , 1998 .

[61]  K. Nakanishi,et al.  Structural Studies by Exciton Coupled Circular Dichroism over a Large Distance: Porphyrin Derivatives of Steroids, Dimeric Steroids, and Brevetoxin B⊥ , 1996 .

[62]  K. Nakanishi,et al.  Exciton coupled circular dichroic studies of self-assembled brevetoxin-porphyrin conjugates in lipid bilayers and polar solvents. , 1996, Chemistry & biology.

[63]  S. Shinkai,et al.  Sugar-Controlled Aggregate Formation in Boronic Acid-Appended Porphyrin Amphiphiles , 1996 .

[64]  P. Collings,et al.  Resonance light scattering: a new technique for studying chromophore aggregation , 1995, Science.

[65]  L. Marzilli,et al.  Interactions of an Electron-Rich Tetracationic Tentacle Porphyrin with Calf Thymus DNA , 1994 .

[66]  C. Bustamante,et al.  Porphyrin Assemblies On DNA As Studied By A Resonance Light-Scattering Technique , 1993 .

[67]  M. Zandomeneghi,et al.  Coupled oscillator calculations of circular dichroism intensities: Structural applications in organic chemistry , 1993 .

[68]  C. Boettcher,et al.  Chiral micellar porphyrin fibers with 2-aminoglycosamide head groups , 1992 .

[69]  E. Gibbs,et al.  Self-Assembly Of Porphyrins On Nucleic Acids And Polypeptides , 1991 .

[70]  Werner K¨hlbrandt,et al.  Three-dimensional structure of plant light-harvesting complex determined by electron crystallography , 1991, Nature.

[71]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[72]  J. Schellman,et al.  Matrix‐method calculation of linear and circular dichroism spectra of nucleic acids and polynucleotides , 1984, Biopolymers.

[73]  I. Tinoco,et al.  Circular dichroism calculations for double‐stranded polynucleotides of repeating sequence , 1977, Biopolymers.

[74]  I. Tinoco,et al.  Polynucleotide circular dichroism calculations: Use of an all‐order classical coupled oscillator polarizability theory , 1976, Biopolymers.

[75]  K. Nakanishi,et al.  Quantitative definition of exciton chirality and the distant effect in the exciton chirality method , 1975 .

[76]  R. Woody,et al.  The origin of the heme Cotton effects in myoglobin and hemoglobin. , 1971 .

[77]  R. Woody,et al.  Origin of the rotational strength of heme transitions of myoglobin , 1969 .

[78]  W. C. Johnson,et al.  Circular dichroism of polynucleotides: A simple theory , 1969 .

[79]  Howard DeVoe,et al.  Optical Properties of Molecular Aggregates. II. Classical Theory of the Refraction, Absorption, and Optical Activity of Solutions and Crystals , 1965 .

[80]  Howard DeVoe,et al.  Optical Properties of Molecular Aggregates. I. Classical Model of Electronic Absorption and Refraction , 1964 .

[81]  Michael Kasha,et al.  Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates1, 2 , 1963 .

[82]  R. Nolte,et al.  Supramolecular porphyrin polymers in solution and at the solid-liquid interface. , 2008, Nano letters.

[83]  G. Ellestad Structure and chiroptical properties of supramolecular flower pigments. , 2006, Chirality.

[84]  S. Matile,et al.  Use of the exciton chirality method in the investigation of ligand-gated synthetic ion channels. , 2006, Chirality.

[85]  Carlo Rosini,et al.  Structural determinations by circular dichroism spectra analysis using coupled oscillator methods: an update of the applications of the DeVoe polarizability model. , 2004, Chirality.

[86]  Z. Bikádi,et al.  Supramolecular exciton chirality of carotenoid aggregates. , 2003, Chirality.

[87]  N. Periasamy,et al.  Self-Assembly of Template-Directed J-Aggregates of Porphyrin , 2003 .

[88]  B. Bouvier,et al.  Dipolar coupling between electronic transitions of the DNA bases and its relevance to exciton states in double helices , 2002 .

[89]  S. Allenmark Chiroptical methods in the stereochemical analysis of natural products. , 2000, Natural product reports.

[90]  Masato Ikeda,et al.  Meso–meso-linked porphyrin dimer as a novelscaffold for the selective binding of oligosaccharides , 2000 .

[91]  Martin Gouterman,et al.  1 – Optical Spectra and Electronic Structure of Porphyrins and Related Rings , 1978 .