A multi-layered SiC coating to protect graphite spheres from high temperature oxidation in static air

[1]  Zu-de Feng,et al.  Surface oxidation behavior in air and O2-H2O-Ar atmospheres of continuous freestanding SiC films derived from polycarbosilane , 2018, Ceramics International.

[2]  P. Zhou,et al.  Dual layer SiC coating on matrix graphite sphere prepared by pack cementation and fluidized‐bed chemical vapor deposition , 2017 .

[3]  P. Zhou,et al.  Micro Four‐Layer SiC Coating on Matrix Graphite Spheres of HTR Fuel Elements by Two‐Step Pack Cementation , 2016 .

[4]  F. Kang,et al.  Advantages of natural microcrystalline graphite filler over petroleum coke in isotropic graphite preparation , 2015 .

[5]  Rongzheng Liu,et al.  High temperature oxidation behavior of SiC coating in TRISO coated particles , 2014 .

[6]  Chien-Hung Chen,et al.  The oxidation effects of nuclear graphite during air-ingress accidents in HTGR , 2014 .

[7]  H. Katsui,et al.  Carbon Interlayer Between CVD SiC and SiO2 in High‐Temperature Passive Oxidation , 2014 .

[8]  Hongsheng Zhao,et al.  Oxidation behaviors of SiO2/SiC coated matrix graphite of high temperature gas-cooled reactor fuel element , 2013 .

[9]  G. Song,et al.  Influence of grain size on high temperature oxidation behavior of Cr2AlC ceramics , 2013 .

[10]  P. A. Vigato,et al.  ELECTRON BACKSCATTER DIFFRACTION (EBSD): A NEW TECHNIQUE FOR THE IDENTIFICATION OF PIGMENTS AND RAW MATERIALS IN HISTORIC GLASSES AND CERAMICS , 2011 .

[11]  Y. Katoh,et al.  Handbook of SiC properties for fuel performance modeling , 2007 .

[12]  T. Liang,et al.  Manufacture and characteristics of spherical fuel elements for the HTR-10 , 2006 .

[13]  Liang Tongxiang,et al.  The stability of SiC coating and SiO2/SiC multilayer on the surface of graphite for HTGRs at normal service condition , 2005 .

[14]  W. King,et al.  Universal features of grain boundary networks in FCC materials , 2005 .

[15]  Gregory K. Miller,et al.  Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance , 2003 .

[16]  T. Goto,et al.  High-temperature active/passive oxidation and bubble formation of CVD SiC in O2 and CO2 atmospheres , 2002 .

[17]  Qamar Ul Wahab,et al.  High-carbon concentrations at the silicon dioxide–silicon carbide interface identified by electron energy loss spectroscopy , 2000 .

[18]  C. Pantano,et al.  Silicon oxycarbide formation on SiC surfaces and at the SiC/SiO2 interface , 1997 .

[19]  R. E. Tressler,et al.  Passive‐Oxidation Kinetics of High‐Purity Silicon Carbide from 800° to 1100°C , 1996 .

[20]  Guan Jie,et al.  Improvement in oxidation resistance of the nuclear graphite by reaction-coated SiC coating , 1995 .

[21]  T. Hirai,et al.  Active‐to‐Passive Transition and Bubble Formation for High‐Temperature Oxidation of Chemically Vapor‐Deposited Silicon Carbide in CO–CO2 Atmosphere , 1994 .

[22]  T. Hirai,et al.  High‐Temperature Active Oxidation of Chemically Vapor‐Deposited Silicon Carbide in an Ar─O2 Atmosphere , 1991 .

[23]  Arthur H. Heuer,et al.  Volatility Diagrams for Silica, Silicon Nitride, and Silicon Carbide and Their Application to High‐Temperature Decomposition and Oxidation , 1990 .

[24]  Takashi Goto,et al.  High‐Temperature Passive Oxidation of Chemically Vapor Deposited Silicon Carbide , 1989 .

[25]  H. P. Kirchner,et al.  Effect of Grain‐Boundary Oxidation on Fracture Toughness of SiC , 1987 .

[26]  R. E. Tressler,et al.  Oxidation Kinetics of Silicon Carbide Crystals and Ceramics: I, In Dry Oxygen , 1986 .

[27]  Earl A. Gulbransen,et al.  The high-temperature oxidation, reduction, and volatilization reactions of silicon and silicon carbide , 1972 .