Hands-off Linear Interaction Energy Approach to Binding Mode and Affinity Estimation of Estrogens

With this work we target the development of a predictictive model for the identification of small molecules which bind to the estrogen receptor alpha and, thus, may act as endocrine disruptors. We propose a combined thermodynamic approach for the estimation of preferential binding modes along with corresponding free energy differences using a linear interaction energy (LIE) ansatz. The LIE model is extended by a Monte Carlo approach for the computation of conformational entropies as recently developed by our group. Incorporating the entropy contribution substantially increased the correlation with experimental affinity values. Both squared coefficients for the fitted data as well as the more meaningful leave-one-out cross-validation of predicted energies were elevated up to r(Fit)² = 0.87 and q(LOO)² = 0.82, respectively. All calculations have been performed on a set of 31 highly diverse ligands regarding their structural properties and affinities to the estrogen receptor alpha. Comparison of predicted ligand orientations with crystallographic data retrieved from the Protein database pdb.org revealed remarkable binding mode predictions.

[1]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[2]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[3]  P. Kollman,et al.  Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation , 1993 .

[4]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[5]  A. Tropsha,et al.  Beware of q 2 , 2002 .

[6]  W. Tong,et al.  QSAR Models Using a Large Diverse Set of Estrogens. , 2001 .

[7]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[8]  Jonathan W. Essex,et al.  Prediction of protein–ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations , 2010, J. Comput. Aided Mol. Des..

[9]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[10]  Direct Reweighting Strategies in Conformation Dynamics , 2011 .

[11]  D. Beveridge,et al.  Free energy via molecular simulation: applications to chemical and biomolecular systems. , 1989, Annual review of biophysics and biophysical chemistry.

[12]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[13]  H Fang,et al.  The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. , 2000, Toxicological sciences : an official journal of the Society of Toxicology.

[14]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[15]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[16]  Paolo Tosco,et al.  A 3D-QSAR-Driven Approach to Binding Mode and Affinity Prediction , 2012, J. Chem. Inf. Model..

[17]  Eric J. Sorin,et al.  Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. , 2005, Biophysical journal.

[18]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998, J. Comput. Chem..

[19]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[20]  B. Pendleton,et al.  Hybrid Monte Carlo simulations theory and initial comparison with molecular dynamics , 1993 .

[21]  Ajay N. Jain,et al.  Scoring functions for protein-ligand docking. , 2006, Current protein & peptide science.

[22]  Chris Oostenbrink,et al.  Are Automated Molecular Dynamics Simulations and Binding Free Energy Calculations Realistic Tools in Lead Optimization? An Evaluation of the Linear Interaction Energy (LIE) Method , 2006, J. Chem. Inf. Model..

[23]  R. Zwanzig High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases , 1954 .

[24]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[25]  Jens Carlsson,et al.  Predicting binding modes from free energy calculations. , 2008, Journal of medicinal chemistry.

[26]  K. Grandien,et al.  Printed in U.S.A. Copyright © 1997 by The Endocrine Society Comparison of the Ligand Binding Specificity and Transcript Tissue Distribution of Estrogen Receptors � and � , 2022 .

[27]  Andrzej M. Brzozowski,et al.  Interaction of Transcriptional Intermediary Factor 2 Nuclear Receptor Box Peptides with the Coactivator Binding Site of Estrogen Receptor α* , 2002, The Journal of Biological Chemistry.

[28]  M Rarey,et al.  Detailed analysis of scoring functions for virtual screening. , 2001, Journal of medicinal chemistry.

[29]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[30]  Irwin D. Kuntz,et al.  Development and validation of a modular, extensible docking program: DOCK 5 , 2006, J. Comput. Aided Mol. Des..

[31]  Chris Oostenbrink,et al.  Computational Prediction of Binding Affinity for CYP1A2-Ligand Complexes Using Empirical Free Energy Calculations , 2010, Drug Metabolism and Disposition.

[32]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[33]  A. Tropsha,et al.  Beware of q2! , 2002, Journal of molecular graphics & modelling.

[34]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[35]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[36]  Akash Khandelwal,et al.  Improved estimation of ligand–macromolecule binding affinities by linear response approach using a combination of multi-mode MD simulation and QM/MM methods , 2007, J. Comput. Aided Mol. Des..

[37]  Marcus Weber,et al.  Classical hybrid Monte-Carlo simulation of the interconversion of hexabromocyclododecane stereoisomers , 2008 .

[38]  J. Aqvist,et al.  A new method for predicting binding affinity in computer-aided drug design. , 1994, Protein engineering.

[39]  Yan Li,et al.  In Silico Prediction of Estrogen Receptor Subtype Binding Affinity and Selectivity Using Statistical Methods and Molecular Docking with 2-Arylnaphthalenes and 2-Arylquinolines , 2010, International journal of molecular sciences.

[40]  K. Korach,et al.  Diethylstilbestrol and Other Estrogens in the Environment , 1984 .

[41]  N. Foloppe,et al.  Towards predictive ligand design with free-energy based computational methods? , 2006, Current medicinal chemistry.

[42]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[43]  C. E. Peishoff,et al.  A critical assessment of docking programs and scoring functions. , 2006, Journal of medicinal chemistry.

[44]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[45]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[46]  Marcus Weber,et al.  How to simulate affinities for host–guest systems lacking binding mode information: application to the liquid chromatographic separation of hexabromocyclododecane stereoisomers , 2012, Journal of Molecular Modeling.

[47]  Nico P E Vermeulen,et al.  Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method. , 2004, Journal of medicinal chemistry.

[48]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[49]  Araz Jakalian,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: I. Method , 2000 .

[50]  Christopher I. Bayly,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: II. Parameterization and validation , 2002, J. Comput. Chem..

[51]  K. Andrae,et al.  A simple method for the estimation of entropy differences , 2010 .

[52]  A. Kennedy,et al.  Hybrid Monte Carlo , 1988 .

[53]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[54]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[55]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..