A FRAMEWORK FOR QUANTIFYING THE DEGENERACIES OF EXOPLANET INTERIOR COMPOSITIONS

Several transiting super-Earths are expected to be discovered in the coming few years. While tools to model the interior structure of transiting planets exist, inferences about the composition are fraught with ambiguities. We present a framework to quantify how much we can robustly infer about super-Earth and Neptune-size exoplanet interiors from radius and mass measurements. We introduce quaternary diagrams to illustrate the range of possible interior compositions for planets with four layers (iron core, silicate mantles, water layers, and H/He envelopes). We apply our model to CoRoT-7b, GJ 436b, and HAT-P-11b. Interpretation of planets with H/He envelopes is limited by the model uncertainty in the interior temperature, while for CoRoT-7b observational uncertainties dominate. We further find that our planet interior model sharpens the observational constraints on CoRoT-7b's mass and radius, assuming the planet does not contain significant amounts of water or gas. We show that the strength of the limits that can be placed on a super-Earth's composition depends on the planet's density; for similar observational uncertainties, high-density super-Mercuries allow the tightest composition constraints. Finally, we describe how techniques from Bayesian statistics can be used to take into account in a formal way the combined contributions of both theoretical and observational uncertainties to ambiguities in a planet's interior composition. On the whole, with only a mass and radius measurement an exact interior composition cannot be inferred for an exoplanet because the problem is highly underconstrained. Detailed quantitative ranges of plausible compositions, however, can be found.

[1]  I. Baraffe,et al.  Structure and evolution of super-Earth to super-Jupiter exoplanets - I. Heavy element enrichment in the interior , 2008, 0802.1810.

[2]  W. Traub,et al.  TRANSITS OF EARTH-LIKE PLANETS , 2009, 0903.3371.

[3]  S. Seager,et al.  Ocean Planet or Thick Atmosphere: On the Mass-Radius Relationship for Solid Exoplanets with Massive Atmospheres , 2007, 0710.4941.

[4]  X. Delfosse,et al.  Habitable planets around the star Gliese 581 , 2007, 0710.5294.

[5]  M. Holman,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 IMPROVED PARAMETERS FOR EXTRASOLAR TRANSITING PLANETS , 2008 .

[6]  Y. Alibert,et al.  Bulk composition of the transiting hot Neptune around GJ 436 , 2009, 0904.2979.

[7]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[8]  Y.-W. Lee,et al.  Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture , 2001 .

[9]  R. Rafikov Atmospheres of Protoplanetary Cores: Critical Mass for Nucleated Instability , 2004, astro-ph/0405507.

[10]  A. D. Etangs,et al.  A diagram to determine the evaporation status of extrasolar planets , 2006, astro-ph/0609744.

[11]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets: XVIII. An Earth-mass planet in the GJ 581 planetary system , 2009, 0906.2780.

[12]  Portugal,et al.  Accurate Spitzer infrared radius measurement for the hot Neptune GJ 436b , 2007, 0707.2261.

[13]  William B. Hubbard,et al.  A Theory for the Radius of the Transiting Giant Planet HD 209458b , 2003, astro-ph/0305277.

[14]  W. Hubbard The Jovian surface condition and cooling rate , 1977 .

[15]  M. Marley,et al.  Comparative models of Uranus and Neptune , 1995 .

[16]  W. Benz,et al.  Birth and fate of hot-Neptune planets , 2005, astro-ph/0512091.

[17]  S. Kelley,et al.  Crystal–melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene , 2007 .

[18]  M. Kuchner Volatile-rich Earth-Mass Planets in the Habitable Zone , 2003, astro-ph/0303186.

[19]  UC Berkeley,et al.  HAT-P-11b: A SUPER-NEPTUNE PLANET TRANSITING A BRIGHT K STAR IN THE KEPLER FIELD , 2009, 0901.0282.

[20]  D. Queloz,et al.  The HARPS search for southern extra-solar planets. XI. Super-Earths (5 and 8 M{⊕}) in a 3-planet system , 2007, 0704.3841.

[21]  G. Benedict,et al.  A Hubble Space Telescope Transit Light Curve For GJ 436B , 2008, 0806.0851.

[22]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[23]  S. Seager,et al.  Ranges of Atmospheric Mass and Composition of Super-Earth Exoplanets , 2008 .

[24]  D. SaumonT. Guillot Shock Compression of Deuterium and the Interiors of Jupiter and Saturn , 2004 .

[25]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[26]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets - XIII. A planetary system with 3 super-Earths (4.2, 6.9, and 9.2 M) , 2008, 0806.4587.

[27]  L. Close,et al.  FOLLOW-UP OBSERVATIONS OF THE NEPTUNE MASS TRANSITING EXTRASOLAR PLANET HAT-P-11b , 2009, 0905.1114.

[28]  S. Seager,et al.  A Computational Tool to Interpret the Bulk Composition of Solid Exoplanets based on Mass and Radius Measurements , 2008, 0808.1916.

[29]  Hans-Peter Schertl,et al.  Geochim. cosmochim. acta , 1989 .

[30]  Avi Shporer,et al.  PHOTOMETRIC FOLLOW-UP OBSERVATIONS OF THE TRANSITING NEPTUNE-MASS PLANET GJ 436b , 2008, 0805.3915.

[31]  Formation and structure of the three Neptune-mass planets system around HD 69830 , 2006, astro-ph/0607175.

[32]  J. Fortney,et al.  Effects of helium phase separation on the evolution of extrasolar giant planets , 2003, astro-ph/0402620.

[33]  G. Laughlin,et al.  Discovery and Characterization of Transiting Super Earths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope , 2009, 0903.4880.

[34]  Mark Clampin,et al.  Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-Up by the James Webb Space Telescope , 2010 .

[35]  D. Queloz,et al.  Detection of transits of the nearby hot Neptune GJ 436 b , 2007, Astronomy & Astrophysics.

[36]  B. Hansen On the Absorption and Redistribution of Energy in Irradiated Planets , 2008, 0801.2972.

[37]  C. Sotin,et al.  A new family of planets? Ocean-Planets , 2003 .

[38]  D. Sasselov,et al.  THE ATMOSPHERIC SIGNATURES OF SUPER-EARTHS: HOW TO DISTINGUISH BETWEEN HYDROGEN-RICH AND HYDROGEN-POOR ATMOSPHERES , 2008, 0808.1902.

[39]  Tristan Guillot THE INTERIORS OF GIANT PLANETS: Models and Outstanding Questions , 2001 .

[40]  Drake Deming,et al.  Spitzer Transit and Secondary Eclipse Photometry of GJ 436b , 2007, 0707.2778.

[41]  F. Allard,et al.  The Evolution of Irradiated Planets: Application to Transits , 2004, astro-ph/0401487.

[42]  Radius and Structure Models of the First Super-Earth Planet , 2006, astro-ph/0610122.

[43]  Debra A. Fischer,et al.  A Neptune-Mass Planet Orbiting the Nearby M Dwarf GJ 436 , 2004 .

[44]  et al,et al.  The CoRoT space mission : early results Special feature Transiting exoplanets from the CoRoT space mission VIII . CoRoT-7 b : the first super-Earth with measured radius , 2009 .

[45]  S. Seager,et al.  Mass-Radius Relationships for Solid Exoplanets , 2007, 0707.2895.

[46]  Could we identify hot ocean-planets with CoRoT, Kepler and Doppler velocimetry? , 2007, astro-ph/0701608.

[47]  S. Seager,et al.  Coreless Terrestrial Exoplanets , 2008, 0808.1908.

[48]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[49]  Guillermo Torres,et al.  Accepted for publication in The Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE TRANSITING EXOPLANET HOST STAR GJ 436: A TEST OF STELLAR EVOLUTION MODELS IN THE LOWER MAIN SEQUENCE, AND REVISED PLANETARY PARAME , 2008 .

[50]  D. Stevenson Formation of the giant planets , 1982 .

[51]  R. P. Butler,et al.  The M Dwarf GJ 436 and its Neptune‐Mass Planet , 2006, astro-ph/0608260.

[52]  Marc Ollivier,et al.  The CoRoT space mission : early results Special feature The CoRoT-7 planetary system : two orbiting super-Earths , 2009 .

[53]  O. Grasset,et al.  A STUDY OF THE ACCURACY OF MASS–RADIUS RELATIONSHIPS FOR SILICATE-RICH AND ICE-RICH PLANETS UP TO 100 EARTH MASSES , 2009, 0902.1640.

[54]  Diana Valencia,et al.  Detailed Models of Super-Earths: How Well Can We Infer Bulk Properties? , 2007, 0704.3454.

[55]  Darin Ragozzine,et al.  PROBING THE INTERIORS OF VERY HOT JUPITERS USING TRANSIT LIGHT CURVES , 2008, Proceedings of the International Astronomical Union.