Arctic haze in a climate changing world: the 2010-2020 trend (HAZECLIC)

1 University of Florence, Department of Chemistry “Ugo Schiff”, Sesto F.no, I-50019, Florence, Italy 2 University of Florence & INFN-Firenze, Department of Physics, Sesto F.no, I-50019, Florence, Italy 3 The National Research Council of Italy, Institute of Polar Sciences, I-40129, Bologna, Italy 4 Norwegian Institute for Air Research (NILU), PO Box 100, N-2027, Kjeller, Norway 5 Stockholm University, Department of Environmental Science, Atmospheric Science Unit, S 106 91, Stockholm, Sweden

[1]  P. Zieger,et al.  How representative is Svalbard for future Arctic climate evolution? An Earth system modelling perspective (SvalCLIM) , 2021 .

[2]  D. Jacob,et al.  Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze , 2020, Nature Communications.

[3]  P. Zieger,et al.  Multidisciplinary research on biogenically driven new particle formation in Svalbard , 2020 .

[4]  A. Kokhanovsky,et al.  Physics and Chemistry of the Arctic Atmosphere , 2020 .

[5]  L. Barrie,et al.  A Factor and Trends Analysis of Multidecadal Lower Tropospheric Observations of Arctic Aerosol Composition, Black Carbon, Ozone, and Mercury at Alert, Canada , 2019, Journal of Geophysical Research: Atmospheres.

[6]  D. Meloni,et al.  Biogenic Aerosol in the Artic from Eight Years of MSA Data from Ny Ålesund (Svalbard Islands) and Thule (Greenland) , 2019, Atmosphere.

[7]  P. Rasch,et al.  Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing , 2018 .

[8]  M. Severi,et al.  Determination of Rare Earth Elements in multi-year high-resolution Arctic aerosol record by double focusing Inductively Coupled Plasma Mass Spectrometry with desolvation nebulizer inlet system. , 2018, The Science of the total environment.

[9]  J. Abbatt,et al.  Novel pathway of SO 2 oxidation in the atmosphere: reactions with monoterpene ozonolysis intermediates and secondary organic aerosol , 2017 .

[10]  U. Dayan,et al.  Relationships linking primary production, sea ice melting, and biogenic aerosol in the Arctic , 2016 .

[11]  J. Seinfeld,et al.  Ion-induced nucleation of pure biogenic particles , 2016, Nature.

[12]  A. Viola,et al.  Size distribution and ion composition of aerosol collected at Ny-Ålesund in the spring–summer field campaign 2013 , 2016, Rendiconti Lincei.

[13]  J. A. Navarro,et al.  Amplification of Arctic warming by past air pollution reductions in Europe , 2016 .

[14]  A. Viola,et al.  Stable boundary layer vertical scales in the Arctic: observations and analyses at Ny‐Ålesund, Svalbard , 2016 .

[15]  A. Viola,et al.  Sulfate source apportionment in the Ny-Ålesund (Svalbard Islands) Arctic aerosol , 2016, Rendiconti Lincei.

[16]  J. Christensen,et al.  Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set , 2015 .

[17]  Chuanfeng Zhao,et al.  Effects of Arctic haze on surface cloud radiative forcing , 2015 .

[18]  J. Christensen,et al.  AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers , 2015 .

[19]  C. Ritter,et al.  The Sensible Heat Flux in the Course of the Year at Ny-Ålesund, Svalbard: Characteristics of Eddy Covariance Data and Corresponding Model Results , 2014 .

[20]  D. W. Nelson,et al.  A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements , 2014 .

[21]  I. Riipinen,et al.  Direct Observations of Atmospheric Aerosol Nucleation , 2013, Science.

[22]  Shamil Maksyutov,et al.  16‐year simulation of Arctic black carbon: Transport, source contribution, and sensitivity analysis on deposition , 2013 .

[23]  T. Aoki Reflection properties of snow surfaces , 2013 .

[24]  P. Tunved,et al.  Arctic aerosol life cycle: linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard , 2012 .

[25]  G. König‐Langlo,et al.  Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard , 2012 .

[26]  U. Dayan,et al.  MBAS (Methylene Blue Active Substances) and LAS (Linear Alkylbenzene Sulphonates) in Mediterranean coastal aerosols: Sources and transport processes , 2011 .

[27]  A. Arneth,et al.  The Impact of Black Carbon on Arctic Climate (2011). , 2011 .

[28]  R. Barry,et al.  Processes and impacts of Arctic amplification: A research synthesis , 2011 .

[29]  Harald Sodemann,et al.  Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output , 2010 .

[30]  Mian Chin,et al.  A multi-model assessment of pollution transport to the Arctic , 2008 .

[31]  P. Quinn,et al.  Arctic haze: current trends and knowledge gaps , 2007 .

[32]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[33]  L. Barrie,et al.  Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980–1995 , 1999 .

[34]  L. Barrie,et al.  Biogenic sulfur aerosol in the arctic troposphere: 1. contributions to total sulfate , 1993 .

[35]  Arctic haze. , 1983, Environmental science & technology.