An improved bias-compensation approach for errors-in-variables model identification

Parametric estimation of the dynamic errors-in-variables models is considered in this paper. In particular, a bias compensation approach is examined in a generalized framework. Sufficient conditions for uniqueness of the identified model are presented. Subsequently, a statistical accuracy analysis of the estimation algorithm is carried out. The asymptotic covariance matrix of the system parameter estimates depends on a user chosen filter and a certain weighting matrix. It is shown how these can be tuned to boost the estimation performance. The numerical simulation results suggest that the covariance matrix of the estimated parameter vector is very close to the Cramer-Rao lower bound for the estimation problem.

[1]  Petre Stoica,et al.  Combined instrumental variable and subspace fitting approach to parameter estimation of noisy input-output systems , 1995, IEEE Trans. Signal Process..

[2]  Umberto Soverini,et al.  The frisch scheme in dynamic system identification , 1990, Autom..

[3]  T. Soderstrom,et al.  Accuracy analysis of the Frisch estimates for identifying errors-in-variables systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[4]  Rik Pintelon,et al.  Robust Parametric Transfer Function Estimation using Complex Logarithmic Frequency Response Data , 1994 .

[5]  Gerd Vandersteen,et al.  Frequency-domain system identification using non-parametric noise models estimated from a small number of data sets , 1997, Autom..

[6]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[7]  Umberto Soverini,et al.  A New Criterion in EIV Identification and Filtering Applications , 2003 .

[8]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[9]  P. Van Overschee,et al.  Subspace algorithms for the stochastic identification problem , 1991 .

[10]  Torsten Söderström,et al.  Identification Methods of Dynamic Systems in Presence of Input Noise , 2000 .

[11]  Cheng Hsiao,et al.  Efficient Estimation of a Dynamic Error-Shock Model , 1976 .

[12]  Torsten Söderström,et al.  Errors-in-variables methods in system identification , 2018, Autom..

[13]  Torsten Söderström,et al.  Identification of stochastic linear systems in presence of input noise , 1981, Autom..

[14]  Torsten Söderström,et al.  The Cramér-Rao lower bound for noisy input-output systems , 2000, Signal Process..

[15]  Bogdan Dumitrescu,et al.  Multistage IIR filter design using convex stability domains defined by positive realness , 2004, IEEE Transactions on Signal Processing.

[16]  Jitendra K. Tugnait,et al.  Stochastic system identification with noisy input using cumulant statistics , 1990, 29th IEEE Conference on Decision and Control.

[17]  Jianwei Zhang Optimal Instrumental Variable Estimates of the AR Parameters of an ARMA Process , 2006 .

[18]  T. Söderström,et al.  Optimal instrumental variable estimation and approximate implementations , 1983 .

[19]  Bart De Moor,et al.  Subspace algorithms for the stochastic identification problem, , 1993, Autom..

[20]  Umberto Soverini,et al.  Identification of dynamic errors-in-variables models , 1996, Autom..

[21]  T. Söderström ON COMPUTING THE CRAMER-RAO BOUND AND COVARIANCE MATRICES FOR PEM ESTIMATES IN LINEAR STATE SPACE MODELS , 2006 .

[22]  Torsten Söderström,et al.  Perspectives on errors-in-variables estimation for dynamic systems , 2002, Signal Process..

[23]  Jitendra Tugnait Stochastic system identification with noisy input using cumulant statistics , 1992 .

[24]  Dietmar Bauer,et al.  Consistency and asymptotic normality of some subspace algorithms for systems without observed inputs , 1999, Autom..

[25]  B. Anderson,et al.  Identifiability in dynamic errors-in-variables models , 1983, The 22nd IEEE Conference on Decision and Control.

[26]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[27]  P. Stoica,et al.  On the expectation of the product of four matrix-valued Gaussian random variables , 1988 .

[28]  Torsten Söderström,et al.  On instrumental variable and total least squares approaches for identification of noisy systems , 2002 .

[29]  W. Zheng Transfer function estimation from noisy input and output data , 1998 .

[30]  Torsten Söderström,et al.  A SEPARABLE NONLINEAR LEAST-SQUARES APPROACH FOR IDENTIFICATION OF LINEAR SYSTEMS WITH ERRORS IN VARIABLES , 2006 .

[31]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.