On the realization of convex polytopes, Euler's formula and Möbius functions
暂无分享,去创建一个
[1] W. Ledermann. Lectures in Abstract Algebra : vol. III, Theory of Fields and Galois Theory. By N. Jacobson. Pp. xi, 323. 76s. (Van Nostrand) , 1966 .
[2] J. Stoer,et al. Convexity and Optimization in Finite Dimensions I , 1970 .
[3] P. J. Cohen. Set Theory and the Continuum Hypothesis , 1966 .
[4] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .
[5] A. Robinson. Introduction to model theory and to the metamathematics of algebra , 1964 .
[6] B. Lindström. Determinants on semilattices , 1969 .
[7] N. Jacobson,et al. Lectures in Abstract Algebra : vol. III, Theory of Fields and Galois Theory. By N. Jacobson. Pp. xi, 323. 76s. (Van Nostrand) , 1966, The Mathematical Gazette.
[8] Victor Klee,et al. The Euler Characteristic in Combinatorial Geometry , 1963 .
[9] Henry H. Crapo. Möbius Inversion in Lattices , 1969 .