Differential diagnosis of pleural mesothelioma using Logic Learning Machine
暂无分享,去创建一个
Marco Muselli | Enrico Ferrari | Stefano Parodi | Giovanni Ivaldi | Rosa Filiberti | Paola Marroni | Roberta Libener | Michele Mussap | Chiara Manneschi | Erika Montani | M. Muselli | S. Parodi | M. Mussap | R. Filiberti | R. Libener | P. Marroni | G. Ivaldi | Enrico Ferrari | Chiara Manneschi | Erika Montani
[1] Enrico Ferrari,et al. Validation of a new multiple osteochondromas classification through Switching Neural Networks , 2013, American journal of medical genetics. Part A.
[2] Marco Muselli,et al. Use of Attribute Driven Incremental Discretization and Logic Learning Machine to build a prognostic classifier for neuroblastoma patients , 2014, BMC Bioinformatics.
[3] S. Parodi,et al. Diagnostic value of mesothelin in pleural fluids: comparison with CYFRA 21-1 and CEA , 2013, Medical Oncology.
[4] Marco Muselli,et al. Switching Neural Networks: A New Connectionist Model for Classification , 2005, WIRN/NAIS.
[5] BMC Bioinformatics , 2005 .
[6] H. Hoogsteden,et al. The high post‐test probability of a cytological examination renders further investigations to establish a diagnosis of epithelial malignant pleural mesothelioma redundant , 2006, Diagnostic cytopathology.
[7] J Espinosa Arranz,et al. [Malignant mesothelioma]. , 1994, Medicina clinica.
[8] G. Damonte,et al. The application of atmospheric pressure matrix-assisted laser desorption/ionization to the analysis of long-term cryopreserved serum peptidome. , 2011, Analytical biochemistry.
[9] H. Goike,et al. Clinical utility of cytokeratins as tumor markers. , 2004, Clinical biochemistry.
[10] Marco Muselli,et al. Coupling Logical Analysis of Data and Shadow Clustering for Partially Defined Positive Boolean Function Reconstruction , 2011, IEEE Transactions on Knowledge and Data Engineering.
[11] Marco Muselli,et al. Extracting knowledge from biomedical data through Logic Learning Machines and Rulex , 2012 .
[12] Hussein Hijazi,et al. A classification framework applied to cancer gene expression profiles. , 2013, Journal of healthcare engineering.
[13] S. Skates,et al. Soluble mesothelin in effusions: a useful tool for the diagnosis of malignant mesothelioma , 2007, Thorax.
[14] Marco Muselli,et al. Evaluating switching neural networks through artificial and real gene expression data , 2009, Artif. Intell. Medicine.
[15] David J. Spiegelhalter,et al. Machine Learning, Neural and Statistical Classification , 2009 .
[16] K. Moons,et al. Markers for the non-invasive diagnosis of mesothelioma: a systematic review , 2011, British Journal of Cancer.
[17] M. Metintaş,et al. Diagnostic value of CEA, CA 15-3, CA 19-9, CYFRA 21-1, NSE and TSA assay in pleural effusions. , 2001, Lung cancer.
[18] S. Bielsa,et al. Clinical impact and reliability of pleural fluid mesothelin in undiagnosed pleural effusions. , 2009, American journal of respiratory and critical care medicine.
[19] Marco Muselli,et al. Logic Learning Machine creates explicit and stable rules stratifying neuroblastoma patients , 2013, BMC Bioinformatics.
[20] Vipin Kumar,et al. Introduction to Data Mining , 2022, Data Mining and Machine Learning Applications.
[21] D. Rice,et al. Diagnosis, Staging, and Surgical Treatment of Malignant Pleural Mesothelioma , 2008, Current treatment options in oncology.
[22] David Shitrit,et al. Diagnostic value of CYFRA 21-1, CEA, CA 19-9, CA 15-3, and CA 125 assays in pleural effusions: analysis of 116 cases and review of the literature. , 2005, The oncologist.