Goodness-of-Fit Tests in Mixed Models

Mixed models, with both random and fixed effects, are most often estimated on the assumption that the random effects are normally distributed. In this paper we propose several formal tests of the hypothesis that the random effects and/or errors are normally distributed. Most of the proposed methods can be extended to generalized linear models where tests for non-normal distributions are of interest. Our tests are nonparametric in the sense that they are designed to detect virtually any alternative to normality. In case of rejection of the null hypothesis, the nonparametric estimation method that is used to construct a test provides an estimator of the alternative distribution.

[1]  Nils Lid Hjort,et al.  Goodness of Fit via Non‐parametric Likelihood Ratios , 2004 .

[2]  Marie Davidian,et al.  A Monte Carlo EM algorithm for generalized linear mixed models with flexible random effects distribution. , 2002, Biostatistics.

[3]  Cécile Proust-Lima,et al.  Robustness of the linear mixed model to misspecified error distribution , 2007, Comput. Stat. Data Anal..

[4]  G. Claeskens,et al.  Testing the Fit of a Parametric Function , 1999 .

[5]  Frequentist-Bayes Lack-of-Fit Tests Based on Laplace Approximations , 2009 .

[6]  Nils Lid Hjort,et al.  Model Selection and Model Averaging , 2001 .

[7]  Emmanuel Lesaffre,et al.  Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution , 2008, Comput. Stat. Data Anal..

[8]  R. L. Eubank,et al.  Testing Goodness-of-Fit in Regression Via Order Selection Criteria , 1992 .

[9]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[10]  Jiming Jiang,et al.  Goodness-of-fit tests for mixed model diagnostics , 2001 .

[11]  Rudolf Beran,et al.  Estimating Coefficient Distributions in Random Coefficient Regressions , 1992 .

[12]  E. Lesaffre,et al.  Smooth Random Effects Distribution in a Linear Mixed Model , 2004, Biometrics.

[13]  Taesung Park,et al.  Model Diagnostic Plots for Repeated Measures Data , 2004 .

[14]  Stefan Sperlich,et al.  Semiparametric inference in generalized mixed effects models , 2008 .

[15]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[16]  Prasad A. Naik,et al.  Extending the Akaike Information Criterion to Mixture Regression Models , 2007 .

[17]  L. Ryan,et al.  ASSESSING NORMALITY IN RANDOM EFFECTS MODELS , 1989 .

[18]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[19]  Cécile Proust-Lima,et al.  Estimation of linear mixed models with a mixture of distribution for the random effects , 2005, Comput. Methods Programs Biomed..

[20]  Geert Verbeke,et al.  A comparison of methods for estimating the random effects distribution of a linear mixed model , 2010, Statistical methods in medical research.

[21]  J. Nelder,et al.  Hierarchical Generalized Linear Models , 1996 .

[22]  O. Reiersøl Identifiability of a Linear Relation between Variables Which Are Subject to Error , 1950 .

[23]  A. Gallant,et al.  Semi-nonparametric Maximum Likelihood Estimation , 1987 .

[24]  G. Verbeke,et al.  A Linear Mixed-Effects Model with Heterogeneity in the Random-Effects Population , 1996 .

[25]  T. Severini Likelihood Methods in Statistics , 2001 .

[26]  Quang Vuong,et al.  Nonparametric estimation of the mea-surement eror model using multiple indicators , 1998 .

[27]  H. Akaike A new look at the Bayes procedure , 1978 .

[28]  M Davidian,et al.  Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data , 2001, Biometrics.

[29]  T. Ledwina Data-Driven Version of Neyman's Smooth Test of Fit , 1994 .

[30]  Yi-Ting Hwang,et al.  A novel method for testing normality in a mixed model of a nested classification , 2006, Comput. Stat. Data Anal..

[31]  Alexander Meister,et al.  On deconvolution with repeated measurements , 2008 .

[32]  F. Vaida,et al.  Conditional Akaike information for mixed-effects models , 2005 .

[33]  J. Wolfowitz The Minimum Distance Method , 1957 .

[34]  R. Beran,et al.  Minimum Distance Estimation in Random Coefficient Regression Models , 1994 .

[35]  Joseph Sedransk,et al.  Bayesian and frequentist predictive inference for the patterns of care studies , 1991 .

[36]  G. Claeskens,et al.  Testing lack of fit in multiple regression , 2000 .

[37]  P. Hall,et al.  Inference in components of variance models with low replication , 2003 .

[38]  Nils Lid Hjort,et al.  Model Selection and Model Averaging: Contents , 2008 .

[39]  Wei Shen,et al.  Empirical Bayes Estimation via the Smoothing by Roughening Approach , 1999 .

[40]  Jeffrey D. Hart,et al.  Nonparametric Smoothing and Lack-Of-Fit Tests , 1997 .

[41]  Olivier Thas,et al.  Smooth tests of goodness of fit , 1989 .