High capacity group-IV elements (Si, Ge, Sn) based anodes for Lithium-ion Batteries

[1]  W. Han,et al.  Enhanced Electrochemical Performance of Fe0.74Sn5@Reduced Graphene Oxide Nanocomposite Anodes for Both Li-Ion and Na-Ion Batteries. , 2015, ACS applied materials & interfaces.

[2]  Soojin Park,et al.  Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning. , 2015, Nanoscale.

[3]  Y. Leconte,et al.  One-step synthesis of Si@C nanoparticles by laser pyrolysis: high-capacity anode material for lithium-ion batteries. , 2015, ACS applied materials & interfaces.

[4]  W. Han,et al.  A lithiation/delithiation mechanism of monodispersed MSn5 (M = Fe, Co and FeCo) nanospheres , 2015 .

[5]  Yitai Qian,et al.  A synchronous approach for facile production of Ge-carbon hybrid nanoparticles for high-performance lithium batteries. , 2015, Chemical communications.

[6]  T. Yokoshima,et al.  Effect of electrolyte on cycle performances of the electrodeposited Sn-O-C composite anode of lithium secondary batteries , 2015 .

[7]  H. Le,et al.  Conducting additive-free amorphous GeO2/C composite as a high capacity and long-term stability anode for lithium ion batteries. , 2015, Nanoscale.

[8]  Chunsheng Wang,et al.  3D Si/C Fiber Paper Electrodes Fabricated Using a Combined Electrospray/Electrospinning Technique for Li‐Ion Batteries , 2015 .

[9]  Xiaogang Zhang,et al.  Ge–graphene–carbon nanotube composite anode for high performance lithium-ion batteries , 2015 .

[10]  Mingdeng Wei,et al.  In situ synthesis of GeO2/reduced graphene oxide composite on Ni foam substrate as a binder-free anode for high-capacity lithium-ion batteries , 2015 .

[11]  Chunsheng Wang,et al.  Micro-sized nano-porous Si/C anodes for lithium ion batteries , 2015 .

[12]  L. Monconduit,et al.  High cycleability nano-GeO2/mesoporous carbon composite as enhanced energy storage anode material in Li-ion batteries , 2014 .

[13]  J. Bao,et al.  Ge Nanoparticles Encapsulated in Nitrogen-Doped Reduced Graphene Oxide as an Advanced Anode Material for Lithium-Ion Batteries , 2014 .

[14]  H. Cui,et al.  Embedded into graphene Ge nanoparticles highly dispersed on vertically aligned graphene with excellent electrochemical performance for lithium storage. , 2014, ACS applied materials & interfaces.

[15]  Jun Liu,et al.  Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. , 2014, Nano letters.

[16]  M. Winter,et al.  Reversible Storage of Lithium in Three-Dimensional Macroporous Germanium , 2014 .

[17]  Xiaomei Ma,et al.  A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries , 2014 .

[18]  Chaojiang Niu,et al.  Heterogeneous branched core–shell SnO2–PANI nanorod arrays with mechanical integrity and three dimentional electron transport for lithium batteries , 2014 .

[19]  H. Le,et al.  Carbon‐Interconnected Ge Nanocrystals as an Anode with Ultra‐Long‐Term Cyclability for Lithium Ion Batteries , 2014 .

[20]  M. Deepa,et al.  Size-controlled SnO₂ hollow spheres via a template free approach as anodes for lithium ion batteries. , 2014, Nanoscale.

[21]  Dingsheng Wang,et al.  Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization , 2014 .

[22]  Francesco Nobili,et al.  High-stability graphene nano sheets/SnO2 composite anode for lithium ion batteries , 2014 .

[23]  Michael J Sailor,et al.  Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes , 2014, Nature Communications.

[24]  J. Kašpar,et al.  Stable SiOC/Sn Nanocomposite Anodes for Lithium‐Ion Batteries with Outstanding Cycling Stability , 2014 .

[25]  Francesco De Angelis,et al.  Review on recent progress of nanostructured anode materials for Li-ion batteries , 2014 .

[26]  Joong-Kee Lee,et al.  Amorphous carbon-coated prickle-like silicon of micro and nano hybrid anode materials for lithium-ion batteries , 2014 .

[27]  Qing Zhang,et al.  Vertically aligned CNT-supported thick Ge films as high-performance 3D anodes for lithium ion batteries. , 2014, Small.

[28]  Yan Yu,et al.  Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries. , 2014, ACS nano.

[29]  I. Moriguchi,et al.  Enhanced charge-discharge properties of SnO2 nanocrystallites in confined carbon nanospace. , 2014, Chemical communications.

[30]  Seungho Yu,et al.  TiO2-core/Sn-shell Nanotube Arrays Based on Monolithic Negative Electrode for Li-ion Batteries , 2014 .

[31]  Donghai Wang,et al.  Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries , 2014 .

[32]  Ning Li,et al.  Core–shell structured hollow SnO2–polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries , 2014 .

[33]  Jun Lu,et al.  Nanocolumnar structured porous Cu-Sn thin film as anode material for lithium-ion batteries. , 2014, ACS applied materials & interfaces.

[34]  M. Deepa,et al.  Poly(3,4-ethylenedioxythiophene) Sheath Over a SnO2 Hollow Spheres/Graphene Oxide Hybrid for a Durable Anode in Li-Ion Batteries , 2014 .

[35]  Jun Chen,et al.  Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. , 2014, Nanoscale.

[36]  Shuru Chen,et al.  Micro-sized silicon–carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries , 2014 .

[37]  D. Choi,et al.  GeOx/Reduced Graphene Oxide Composite as an Anode for Li‐Ion Batteries: Enhanced Capacity via Reversible Utilization of Li2O along with Improved Rate Performance , 2014 .

[38]  B. Korgel,et al.  Lithium ion battery peformance of silicon nanowires with carbon skin. , 2014, ACS nano.

[39]  Wei Li,et al.  One step preparation of a high performance Ge-C nanocomposite anode for lithium ion batteries by tandem plasma reactions. , 2014, Chemical communications.

[40]  Chuang Yue,et al.  Enhanced reversible lithium storage in germanium nano-island coated 3D hexagonal bottle-like Si nanorod arrays. , 2014, Nanoscale.

[41]  Maria Letizia Terranova,et al.  Si/C hybrid nanostructures for Li-ion anodes: An overview , 2014 .

[42]  C. Shi,et al.  Graphene networks anchored with sn@graphene as lithium ion battery anode. , 2014, ACS nano.

[43]  Jun Chen,et al.  Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. , 2014, Nano letters.

[44]  F. Béguin,et al.  Towards the realistic silicon/carbon composite for Li-ion secondary battery anode , 2014, Journal of Applied Electrochemistry.

[45]  Zhiyu Jiang,et al.  An easy way for preparing high performance porous silicon powder by acid etching Al–Si alloy powder for lithium ion battery , 2014 .

[46]  S. Dou,et al.  Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances , 2014 .

[47]  Yan‐Bing He,et al.  3D hollow Sn@carbon-graphene hybrid material as promising anode for lithium-ion batteries , 2014 .

[48]  Chan-Hwa Chung,et al.  Highly porous dendritic Ni–Sn anodes for lithium-ion batteries , 2013 .

[49]  Zhenan Bao,et al.  Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. , 2013, Nature chemistry.

[50]  R. Hu,et al.  Sn@SnOx/C nanocomposites prepared by oxygen plasma-assisted milling as cyclic durable anodes for lithium ion batteries , 2013 .

[51]  D. Shi,et al.  A unique sandwich-structured C/Ge/graphene nanocomposite as an anode material for high power lithium ion batteries , 2013 .

[52]  F. Nobili,et al.  High-performance Sn@carbon nanocomposite anode for lithium-ion batteries: Lithium storage processes characterization and low-temperature behavior , 2013 .

[53]  Wei Wang,et al.  Binder-free three-dimensional silicon/carbon nanowire networks for high performance lithium-ion battery anodes , 2013 .

[54]  Soojin Park,et al.  Large-scale synthesis of interconnected Si/SiOx nanowire anodes for rechargeable lithium-ion batteries. , 2013, ChemSusChem.

[55]  Jaephil Cho,et al.  Etched graphite with internally grown Si nanowires from pores as an anode for high density Li-ion batteries. , 2013, Nano letters.

[56]  Jaephil Cho,et al.  Catalyst-free direct growth of a single to a few layers of graphene on a germanium nanowire for the anode material of a lithium battery. , 2013, Angewandte Chemie.

[57]  Cheol‐Min Park,et al.  Effect of oxide layer thickness to nano–Si anode for Li-ion batteries , 2013 .

[58]  Leigang Xue,et al.  Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode , 2013 .

[59]  Bin Liu,et al.  Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries , 2013, Scientific Reports.

[60]  K. Amine,et al.  Cu-Sn Thin Film Production on Copper Substrate , 2013 .

[61]  Chunsheng Wang,et al.  Tin-coated viral nanoforests as sodium-ion battery anodes. , 2013, ACS nano.

[62]  J. Cabana,et al.  Monodisperse Sn nanocrystals as a platform for the study of mechanical damage during electrochemical reactions with Li. , 2013, Nano letters.

[63]  M. L. Focarete,et al.  High-performance Sn@carbon nanocomposite anode for lithium batteries , 2013 .

[64]  Donghai Wang,et al.  Micro-sized Si-C Composite with Interconnected Nanoscale Building Blocks as High-Performance Anodes for Practical Application in Lithium-Ion Batteries , 2013 .

[65]  Yong Wang,et al.  Confined Volume Change in Sn‐Co‐C Ternary Tube‐in‐Tube Composites for High‐Capacity and Long‐Life Lithium Storage , 2013 .

[66]  Jaephil Cho,et al.  Catalytic role of Ge in highly reversible GeO2/Ge/C nanocomposite anode material for lithium batteries. , 2013, Nano letters.

[67]  W. Xi,et al.  Highly Conductive and Strain‐Released Hybrid Multilayer Ge/Ti Nanomembranes with Enhanced Lithium‐Ion‐Storage Capability , 2013, Advanced materials.

[68]  Chunsheng Wang,et al.  Uniform nano-Sn/C composite anodes for lithium ion batteries. , 2013, Nano letters.

[69]  G. Cui,et al.  An elastic germanium–carbon nanotubes–copper foam monolith as an anode for rechargeable lithium batteries , 2013 .

[70]  Thomas A. Yersak,et al.  An All-Solid-State Li-Ion Battery with a Pre-Lithiated Si-Ti-Ni Alloy Anode , 2013 .

[71]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[72]  Hsing-Yu Tuan,et al.  Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization. , 2012, ACS nano.

[73]  Young-Min Choi,et al.  A Ge inverse opal with porous walls as an anode for lithium ion batteries , 2012 .

[74]  Xianglong Li,et al.  Graphene‐Confined Sn Nanosheets with Enhanced Lithium Storage Capability , 2012, Advanced materials.

[75]  Kyeongse Song,et al.  Hollow Sn-SnO(2) nanocrystal/graphite composites and their lithium storage properties. , 2012, ACS applied materials & interfaces.

[76]  Jaephil Cho,et al.  High‐Performance Macroporous Bulk Silicon Anodes Synthesized by Template‐Free Chemical Etching , 2012 .

[77]  Soojin Park,et al.  Highly stable Si-based multicomponent anodes for practical use in lithium-ion batteries , 2012 .

[78]  W. Han,et al.  CoSn5 Phase: Crystal Structure Resolving and Stable High Capacity as Anodes for Li Ion Batteries. , 2012, The journal of physical chemistry letters.

[79]  Chunsheng Wang,et al.  Sponge-like porous carbon/tin composite anode materials for lithium ion batteries , 2012 .

[80]  M. Ge,et al.  Porous doped silicon nanowires for lithium ion battery anode with long cycle life. , 2012, Nano letters.

[81]  D. Guyomard,et al.  Synthesis of boron-doped Si particles by ball milling and application in Li-ion batteries , 2012 .

[82]  Yu‐Guo Guo,et al.  Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. , 2012, Journal of the American Chemical Society.

[83]  S. Komaba,et al.  Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si–Graphite Composite Negative Electrodes in Li-Ion Batteries , 2012 .

[84]  Deren Yang,et al.  Cu–Ge core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries , 2012 .

[85]  Xiqian Yu,et al.  Amorphous hierarchical porous GeO(x) as high-capacity anodes for Li ion batteries with very long cycling life. , 2011, Journal of the American Chemical Society.

[86]  Soo-Jin Park,et al.  Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching , 2011 .

[87]  Jong Min Kim,et al.  Highly Interconnected Si Nanowires for Improved Stability Li‐Ion Battery Anodes , 2011 .

[88]  Jun Chen,et al.  A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries , 2011 .

[89]  Yi Cui,et al.  Prelithiated silicon nanowires as an anode for lithium ion batteries. , 2011, ACS nano.

[90]  Trevor A. Tyson,et al.  Nanospheres of a new intermetallic FeSn5 phase: synthesis, magnetic properties and anode performance in Li-ion batteries. , 2011, Journal of the American Chemical Society.

[91]  M. Alfredsson,et al.  Nanocrystalline Fe1−xCoxSn2 solid solutions prepared by reduction of salts in tetraethylene glycol , 2011 .

[92]  N. Koratkar,et al.  Functionally strain-graded nanoscoops for high power Li-ion battery anodes. , 2011, Nano letters.

[93]  Jong-Wan Park,et al.  Evaluation of Si/Ge multi-layered negative film electrodes using magnetron sputtering for rechargeable lithium ion batteries , 2011 .

[94]  W. Han,et al.  Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires. , 2010, ACS applied materials & interfaces.

[95]  P. Guduru,et al.  In situ measurement of biaxial modulus of Si anode for Li-ion batteries , 2010, 1108.0567.

[96]  Jong-Wan Park,et al.  Electrochemical characterization of a Ge-based composite film fabricated as an anode material using magnetron sputtering for lithium ion batteries , 2010 .

[97]  W. Han,et al.  Sn/SnOx Core−Shell Nanospheres: Synthesis, Anode Performance in Li Ion Batteries, and Superconductivity , 2010 .

[98]  W. Han,et al.  Single-crystal intermetallic M-Sn (M = Fe, Cu, Co, Ni) nanospheres as negative electrodes for lithium-ion batteries. , 2010, ACS applied materials & interfaces.

[99]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[100]  Jaephil Cho,et al.  Flexible Dimensional Control of High‐Capacity Li‐Ion‐Battery Anodes: From 0D Hollow to 3D Porous Germanium Nanoparticle Assemblies , 2010, Advanced materials.

[101]  Yan Yu,et al.  Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. , 2009, Angewandte Chemie.

[102]  Yong Wang,et al.  Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage , 2009 .

[103]  M. Thackeray,et al.  High-Capacity, Microporous Cu6Sn5 – Sn Anodes for Li-Ion Batteries , 2009 .

[104]  Dongmin Im,et al.  Reaction mechanism and electrochemical characterization of a Sn–Co–C composite anode for Li-ion batteries , 2008 .

[105]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[106]  Yolanda Vasquez,et al.  Nanocrystal conversion chemistry: A unified and materials-general strategy for the template-based synthesis of nanocrystalline solids , 2008 .

[107]  J. Tu,et al.  Preparation and electrochemical performances of nanoscale FeSn2 as anode material for lithium ion batteries , 2008 .

[108]  M. Armand,et al.  Building better batteries , 2008, Nature.

[109]  Yi Cui,et al.  High capacity Li ion battery anodes using ge nanowires. , 2008, Nano letters.

[110]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[111]  M. Whittingham,et al.  Characterization of Amorphous and Crystalline Tin–Cobalt Anodes , 2007 .

[112]  B. Scrosati,et al.  An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries , 2007 .

[113]  R. E. Schaak,et al.  Shape-controlled conversion of beta-Sn nanocrystals into intermetallic M-Sn (M=Fe, Co, Ni, Pd) nanocrystals. , 2007, Journal of the American Chemical Society.

[114]  J. Dahn,et al.  Combinatorial Study of Sn1 − x Co x ( 0 < x < 0.6 ) and [ Sn0.55Co0.45 ] 1 − y C y ( 0 < y < 0.5 ) Alloy Negative Electrode Materials for Li-Ion Batteries , 2006 .

[115]  T. Osaka,et al.  Changes of electro-deposited Sn–Ni alloy thin film for lithium ion battery anodes during charge discharge cycling , 2005 .

[116]  Y. Yoon,et al.  Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries , 2003 .

[117]  W. Behl,et al.  Nano-scale Cu6Sn5 anodes , 2002 .

[118]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[119]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[120]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: III. Sn2Fe : SnFe3 C Active/Inactive Composites , 1999 .

[121]  X. B. Zhang,et al.  Lithium Insertion in Carbon‐Silicon Composite Materials Produced by Mechanical Milling , 1998 .

[122]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[123]  C. Ammerlaan,et al.  Electron paramagnetic resonance on iron-acceptor pairs in silicon , 1984 .