Upper bounds on the smallest size of a complete cap in $\mathrm{PG}(N, q)$, $N\ge3$, under a certain probabilistic conjecture

In the projective space $\mathrm{PG}(N,q)$ over the Galois field of order $q$, $N\ge3$, an iterative step-by-step construction of complete caps by adding a new point on every step is considered. It is proved that uncovered points are evenly placed on the space. A natural conjecture on an estimate of the number of new covered points on every step is done. For a part of the iterative process, this estimate is proved rigorously. Under the conjecture mentioned, new upper bounds on the smallest size $t_{2}(N,q)$ of a complete cap in $\mathrm{PG}(N,q)$ are obtained, in particular, \begin{align*} t_{2}(N,q)<\frac{\sqrt{q^{N+1}}}{q-1}\left(\sqrt{(N+1)\ln q}+1\right)+2\thicksim q^\frac{N-1}{2}\sqrt{(N+1)\ln q},\quad N\ge3. \end{align*} A connection with the Birthday problem is noted. The effectiveness of the new bounds is illustrated by comparison with sizes of complete caps obtained by computer in wide regions of $q$.

[1]  David Brink,et al.  A (probably) exact solution to the Birthday Problem , 2012 .

[2]  Ernst M. Gabidulin,et al.  Linear codes with covering radius 2 and other new covering codes , 1991, IEEE Trans. Inf. Theory.

[3]  Daniele Bartoli,et al.  On sizes of complete arcs in PG(2, q) , 2010, Discret. Math..

[4]  Gérard D. Cohen,et al.  Covering Codes , 2005, North-Holland mathematical library.

[5]  Joseph A. Thas,et al.  Open problems in finite projective spaces , 2015, Finite Fields Their Appl..

[6]  Daniele Bartoli,et al.  Upper bounds on the smallest size of a complete arc in PG(2, q) under a certain probabilistic conjecture , 2014, Problems of Information Transmission.

[7]  J. Hirschfeld,et al.  The packing problem in statistics, coding theory and finite projective spaces , 1998 .

[8]  Daniele Bartoli,et al.  Upper bounds on the smallest size of a complete cap in PG(3, q) and PG(4, q) , 2017, Electron. Notes Discret. Math..

[9]  Daniele Bartoli,et al.  New Quantum Caps in PG(4, 4) , 2009, 0905.1059.

[10]  Daniele Bartoli,et al.  A construction of small complete caps in projective spaces , 2017 .

[11]  Daniele Bartoli,et al.  New types of estimates for the smallest size of complete arcs in a finite Desarguesian projective plane , 2015 .

[12]  Daniele Bartoli,et al.  Small complete caps from singular cubics, II , 2015 .

[13]  B. Segre On complete caps and ovaloids in three-dimensional Galois spaces of characteristic two , 1959 .

[14]  Daniele Bartoli,et al.  Conjectural upper bounds on the smallest size of a complete cap in PG(N, q), N ≥ 3 , 2017, Electron. Notes Discret. Math..

[15]  Complete caps in AG(3, q) from elliptic curves , 2014 .

[16]  Massimo Giulietti,et al.  Small complete caps in PG(N, q), q even , 2007 .

[17]  Fernanda Pambianco,et al.  Small Complete Caps in Spaces of Even Characteristic , 1996, J. Comb. Theory, Ser. A.

[18]  Van H. Vu,et al.  Small Complete Arcs in Projective Planes , 2003, Comb..

[19]  Ilya D. Shkredov,et al.  NEW RESULTS ON SUM‐PRODUCT TYPE GROWTH OVER FIELDS , 2017, Mathematika.

[20]  Daniele Bartoli,et al.  Small Complete Caps from Singular Cubics , 2014 .

[21]  Massimo Giulietti,et al.  Bicovering arcs and small complete caps from elliptic curves , 2013 .

[22]  P. Östergård,et al.  Recursive constructions of complete caps , 2001 .

[23]  Massimo Giulietti,et al.  Quasi-Perfect Linear Codes With Minimum Distance $4$ , 2007, IEEE Transactions on Information Theory.

[24]  Kevin S. Jones,et al.  The Birthday Problem Revisited. , 1993 .

[25]  Giorgis Petridis,et al.  A point-line incidence identity in finite fields, and applications , 2016, 1601.03981.

[26]  William Watkins,et al.  Majorization and the Birthday Inequality , 1991 .

[27]  Stefano Marcugini,et al.  Complete caps in projective spaces PG (n, q) , 2004 .

[28]  Massimo Giulietti,et al.  Small complete caps in Galois affine spaces , 2007 .

[29]  Stefano Marcugini,et al.  On sizes of complete caps in projective spaces PG(n, q) and arcs in planes PG(2, q) , 2009 .

[30]  John L. Smith Tables , 1969, Neuromuscular Disorders.

[31]  Stefano Marcugini,et al.  New inductive constructions of complete caps in PG(N, q), q even , 2009, 0901.0367.

[32]  Vladimir D. Tonchev Quantum codes from caps , 2008, Discret. Math..

[33]  Aileen Mary Mcloughlin,et al.  On the covering radius. , 1977 .

[34]  Daniele Bartoli,et al.  Small complete caps in three-dimensional Galois spaces , 2013, Finite Fields Their Appl..

[35]  Daniele Bartoli,et al.  Upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane based on computer search , 2015, Journal of Geometry.

[36]  Massimo Giulietti,et al.  The geometry of covering codes: small complete caps and saturating sets in Galois spaces , 2013, Surveys in Combinatorics.

[37]  Giorgio Faina,et al.  Small Complete Caps In Galois Spaces , 2012, Ars Comb..