Alternating-parity collective states of yrast and nonyrast bands in lanthanide and actinide nuclei

[1]  D. Lenis,et al.  Z(5): Critical Point Symmetry for the Prolate to Oblate Nuclear Shape Phase Transition , 2004, HNPS Proceedings.

[2]  D. Lenis,et al.  Analytic description of critical point actinides in a transition from octupole deformation to octupole vibrations , 2005, HNPS Proceedings.

[3]  M. S. Nadirbekov,et al.  Triaxiality in excited states of lanthanide and actinide even–even nuclei , 2014 .

[4]  R. Casten,et al.  Anharmonicity of the excited octupole band in actinides using supersymmetric quantum mechanics , 2013 .

[5]  W. Scheid,et al.  Non-yrast quadrupole-octupole spectra , 2012 .

[6]  W. Scheid,et al.  Non-yrast nuclear spectra in a model of coherent quadrupole-octupole motion , 2012, 1203.1873.

[7]  G. Bertsch,et al.  Global systematics of octupole excitations in even-even nuclei , 2011, 1107.3581.

[8]  A. Raduta,et al.  Simultaneous description of four positive parity bands and four negative parity bands , 2006, nucl-th/0606012.

[9]  D. Lenis,et al.  Nuclear collective motion with a coherent coupling interaction between quadrupole and octupole modes , 2006, nucl-th/0603059.

[10]  W. Scheid,et al.  Parity shift and beat staggering structure of octupole bands in a collective model for quadrupole-octupole-deformed nuclei , 2006, nucl-th/0603057.

[11]  M. Caprio Effects of β-γ coupling in transitional nuclei and the validity of the approximate separation of variables , 2005, nucl-th/0510059.

[12]  N. Pietralla,et al.  Evolution of the β excitation in axially symmetric transitional nuclei , 2004 .

[13]  L. Fortunato Soft triaxial roto-vibrational motion in the vicinity of $\gamma=\pi/6$ , 2004, nucl-th/0406043.

[14]  P. Turner,et al.  Spherical harmonics and basic coupling coefficients for the group SO(5) in an SO(3) basis , 2004 .

[15]  D. Lenis,et al.  Sequence of potentials interpolating between the U(5) and E(5) symmetries , 2003, nucl-th/0312120.

[16]  L. Fortunato,et al.  New analytic solutions of the collective Bohr Hamiltonian for a β-soft, γ-soft axial rotor , 2003, nucl-th/0312080.

[17]  J. M. Arias,et al.  The sextic oscillator as a γ-independent potential , 2003, nucl-th/0311069.

[18]  D. Lenis,et al.  Sequence of potentials lying between the U(5) and X(5) symmetries , 2003, nucl-th/0311092.

[19]  I. Ursu,et al.  New features of positive and negative parity rotational bands in , 2003 .

[20]  L. Fortunato,et al.  Analytically solvable potentials for γ-unstable nuclei , 2003, nucl-th/0305042.

[21]  M. Caprio Finite well solution for the E(5) Hamiltonian , 2002 .

[22]  W. Scheid,et al.  Cluster interpretation of parity splitting in alternating parity bands , 2001 .

[23]  F. Iachello Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. , 2001, Physical review letters.

[24]  P. A. Butler,et al.  Intrinsic reflection asymmetry in atomic nuclei , 1996 .

[25]  V. Denisov,et al.  Collective states of even-even and odd nuclei with β2, β3, …, βN deformations , 1995 .

[26]  Ur,et al.  Band structure systematics and symmetries in even-even nuclei. , 1993, Physical review. C, Nuclear physics.

[27]  D. Bonatsos Unified description of deformed even nuclei in the SU(3) limit of the hybrid model , 1988 .

[28]  R. Casten NpNn systematics in heavy nuclei , 1985 .