Scalable discrepancy measures for segmentation evaluation

We propose a set of scalable discrepancy measures that may be applied for segmentation evaluation when a reference is known. The proposed measures take into account under and over detected points within an adjustable area. They give the intensity of the discrepancy and its relative position. Furthermore a scale parameter allows the accuracy of the measures to be adjusted.

[1]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[2]  Joan S. Weszka,et al.  A survey of threshold selection techniques , 1978 .

[3]  Martin D. Levine,et al.  Low Level Image Segmentation: An Expert System , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Yasnoff Wa,et al.  Scene-segmentation algorithm development using error measures. , 1984 .

[5]  Y. J. Zhang,et al.  A survey on evaluation methods for image segmentation , 1996, Pattern Recognit..

[6]  Sang Uk Lee,et al.  A comparative performance study of several global thresholding techniques for segmentation , 1990, Comput. Vis. Graph. Image Process..

[7]  Sanguklee,et al.  A comparative performance study of several global thresholding techniques for segmentation , 1990 .

[8]  Jose Paumard,et al.  Robust comparison of binary images , 1997, Pattern Recognit. Lett..

[9]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[10]  Sudeep Sarkar,et al.  Comparison of Edge Detectors: A Methodology and Initial Study , 1998, Comput. Vis. Image Underst..

[11]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[12]  Jan J. Gerbrands,et al.  Three-dimensional image segmentation using a split, merge and group approach , 1991, Pattern Recognit. Lett..

[13]  Martin D. Levine,et al.  Dynamic Measurement of Computer Generated Image Segmentations , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  William A. Yasnoff,et al.  Error measures for scene segmentation , 1977, Pattern Recognit..

[15]  José Martínez-Aroza,et al.  A measure of quality for evaluating methods of segmentation and edge detection , 2001, Pattern Recognit..

[16]  Dmitry B. Goldgof,et al.  Comparison of Edge Detector Performance through Use in an Object Recognition Task , 2001, Comput. Vis. Image Underst..

[17]  M. Beauchemin,et al.  On the Hausdorff Distance Used for the Evaluation of Segmentation Results , 1998 .

[18]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  I.E. Abdou,et al.  Quantitative design and evaluation of enhancement/thresholding edge detectors , 1979, Proceedings of the IEEE.

[20]  W. Yasnoff,et al.  Scene-segmentation algorithm development using error measures. , 1984, Analytical and quantitative cytology.

[21]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Jan J. Gerbrands,et al.  Objective and quantitative segmentation evaluation and comparison , 1994, Signal Process..

[23]  Remco C. Veltkamp,et al.  State of the Art in Shape Matching , 2001, Principles of Visual Information Retrieval.