Optimization of multi-effect distillation process using a linear enthalpy model

Abstract This paper presents a novel mathematical formulation for modeling-based optimization of the multiple effect distillation (MED) water desalination process using thermal vapor compression (TVC). The presented model is based on a mass flowrate decoupling concept where flowrates of salt and water in the process are separately considered to allow for the development of a linear programming (LP) optimization formulation while accounting for process heat and mass balances. The system models include stream physical properties that are dependent on temperature, salinity, thermodynamic losses and other properties that are influenced by changes in system pressure such as brine and distillate flashing. The overall modeling approach was used to perform a thermo-economic analysis of the process as well as to identify novel flow routing options for boiler feed water return and de-superheating water sources. A sensitivity analysis was performed to evaluate the effects of various system parameters such as motive steam supply pressure, heating costs, seawater salinity and number of operating effects on the thermo-economically optimal design.

[1]  Seyed Ehsan Shakib,et al.  A new approach for process optimization of a METVC desalination system , 2012 .

[2]  Patrick Linke,et al.  Optimal SWRO desalination network synthesis using multiple water quality parameters , 2013 .

[3]  D. Connors On the Enthalpy of SEAWATER1 , 1970 .

[4]  H. Ettouney,et al.  Multiple Effect Evaporation—Vapour Compression Desalination Processes , 2000 .

[5]  Mahmoud El-Halwagi,et al.  An algorithmic approach to the optimization of process cogeneration , 2009 .

[6]  D. A. Roberts,et al.  Impacts of desalination plant discharges on the marine environment: A critical review of published studies. , 2010, Water research.

[7]  Q. Schiermeier Water: Purification with a pinch of salt , 2008, Nature.

[8]  Mohammad Reza Rahimpour,et al.  Simulation and optimization of a six-effect evaporator in a desalination process , 2009 .

[9]  H. Kretzschmar,et al.  The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam , 2000 .

[10]  H. Ettouney Visual basic computer package for thermal and membrane desalination processes , 2004 .

[11]  N. M. Al-Najem,et al.  Thermovapor compression desalters: energy and availability — Analysis of single- and multi-effect systems , 1997 .

[12]  S. Bingulac,et al.  Steady‐State Analysis of the Multiple Effect Evaporation Desalination Process , 1998 .

[13]  G. Assassa,et al.  Computer simulation of the horizontal falling film desalination plant , 1985 .

[14]  L. A. Bromley,et al.  Relative enthalpies of sea salt solutions at 0.deg. to 75.deg. , 1973 .

[15]  N. H. Aly,et al.  Thermal performance of seawater desalination systems , 2003 .

[16]  Alexander Mitsos,et al.  Structural optimization of seawater desalination: I. A flexible superstructure and novel MED–MSF configurations , 2014 .

[17]  M. Darwish,et al.  Multi-effect boiling systems from an energy viewpoint , 2006 .

[18]  Hisham Ettouney,et al.  Developments in thermal desalination processes: Design, energy, and costing aspects , 2007 .

[19]  I. Karagiannis,et al.  Water desalination cost literature: review and assessment , 2008 .

[20]  Mahmoud M. El-Halwagi,et al.  Synthesis of optimal thermal membrane distillation networks , 2015 .

[21]  Hoseyn Sayyaadi,et al.  Thermoeconomic optimization of multi effect distillation desalination systems , 2010 .

[22]  Neil M. Wade,et al.  Distillation plant development and cost update , 2001 .

[23]  Majid Amidpour,et al.  Thermoeconomic optimization of a hybrid pressurized water reactor (PWR) power plant coupled to a multi effect distillation desalination system with thermo-vapor compressor (MED-TVC) , 2010 .

[24]  H. El-Dessouky,et al.  The heat recovery thermal vapour-compression desalting system: A comparison with other thermal desalination processes , 1996 .

[25]  Hoseyn Sayyaadi,et al.  Various approaches in optimization of multi effects distillation desalination systems using a hybrid meta-heuristic optimization tool , 2010 .

[26]  Hossein Ghadamian,et al.  Optimal model for multi effect desalination system integrated with gas turbine , 2010 .

[27]  Gong Shi,et al.  Economic analyses of a nuclear desalination system using deep pool reactors , 1999 .

[28]  O. J. Morin,et al.  Design and operating comparison of MSF and MED systems , 1993 .

[29]  Y. M. El-Sayed,et al.  Designing desalination systems for higher productivity , 2001 .

[30]  Akili D. Khawaji,et al.  Advances in seawater desalination technologies , 2008 .

[31]  A. S. Nafey,et al.  Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes , 2011 .

[32]  Ali Elkamel,et al.  Modelling and optimization of a multistage flash desalination process , 2005 .

[33]  Patrick Linke,et al.  Gas-to-liquid (GTL) technology: Targets for process design and water-energy nexus , 2014 .

[34]  G. Aly Computer simulations of multiple-effect FFE-VC systems for water desalination , 1983 .

[35]  H. Ettouney,et al.  Multiple-effect evaporation desalination systems. thermal analysis , 1999 .

[36]  H. Ettouney Design of single-effect mechanical vapor compression , 2006 .

[37]  J. Lienhard,et al.  Erratum to Thermophysical properties of seawater: A review of existing correlations and data , 2010 .

[38]  Mahmoud M. El-Halwagi,et al.  Integration of Thermal Membrane Distillation Networks with Processing Facilities , 2014 .

[39]  Majid Amidpour,et al.  Optimal coupling of site utility steam network with MED-RO desalination through total site analysis and exergoeconomic optimization. , 2013 .

[40]  H. Ettouney,et al.  Fundamentals of Salt Water Desalination , 2002 .

[41]  Mahmoud M. El-Halwagi,et al.  Sustainable Design Through Process Integration: Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement , 2011 .

[42]  Jacques Andrianne,et al.  Thermal and membrane processe economics: optimized selection for seawater desalination , 2003 .

[43]  Hisham Ettouney,et al.  Performance of parallel feed multiple effect evaporation system for seawater desalination , 2000 .

[44]  A. O. Bin Amer,et al.  Development and optimization of ME-TVC desalination system , 2009 .

[45]  J. R. Cooper,et al.  The International Association for the Properties of Water and Steam , 2008 .

[46]  A. Ophir,et al.  Advanced MED process for most economical sea water desalination , 2005 .

[47]  John J.J. Chen Comments on improvements on a replacement for the logarithmic mean , 1987 .

[48]  Hisham Ettouney,et al.  LiBrH2O absorption heat pump for single-effect evaporation desalination process , 2000 .

[49]  Neil M. Wade,et al.  Technical and economic evaluation of distillation and reverse osmosis desalination processes , 1993 .

[50]  A. Jiménez-Gutiérrez,et al.  Targeting of the Water-Energy Nexus in Gas-to-Liquid Processes: A Comparison of Syngas Technologies , 2014 .