Durchgängiges modellbasiertes Engineering von Gebäudeautomationssystemen

Zusammenfassung Ein Gebäudeautomationssystem (GA-System) ist durch eine Vielzahl von automatisierten Funktionen geprägt. Die Planung und Auslegung eines GA-Systems ist daher ein aufwändiger und fehlerträchtiger Vorgang. Dabei werden Planungsfehler oft erst bei der Inbetriebnahme des Gebäudes erkannt. Um eine frühzeitige Funktionsanalyse und Fehlererkennung zu gewährleisten, wurde ein Ansatz für eine effiziente Erstellung eines funktionalen Modells für die GA entwickelt, mit welchem ein GA-System simuliert, ausgelegt und konfiguriert werden kann.

[1]  Henrik Dibowski Semantic interoperability evaluation model for devices in automation systems , 2017, 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA).

[2]  Albert Albers,et al.  Model Based Requirements Engineering for the Development of Modular Kits , 2017 .

[3]  Esteban Arroyo Esquivel,et al.  Capturing and Exploiting Plant Topology and Process Information as a Basis to Support Engineering and Operational Activities in Process Plants , 2017 .

[4]  Igor Mezic,et al.  Uniformization, organization, association and use of metadata from multiple content providers and manufacturers: A close look at the Building Automation System (BAS) sector , 2016, 2016 IEEE International Conference on Big Data (Big Data).

[5]  Jakub Grela,et al.  Building Automation planning and design tool implementing EN 15 232 BACS efficiency classes , 2016, 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA).

[6]  Uwe Becker,et al.  Evaluation and simulation of building automation systems based on their AutomationML description , 2016, 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA).

[7]  Sandipan Mishra,et al.  A Plug-and-Play Realization of Decentralized Feedback Control for Smart Lighting Systems , 2016, IEEE Transactions on Control Systems Technology.

[8]  Thomas Mundt,et al.  Security in building automation systems - a first analysis , 2016, 2016 International Conference On Cyber Security And Protection Of Digital Services (Cyber Security).

[9]  Ying-Tsung Lee,et al.  An integrated cloud-based smart home management system with community hierarchy , 2016, IEEE Transactions on Consumer Electronics.

[10]  Luciano Lavagno,et al.  Routing-Aware Design of Indoor Wireless Sensor Networks Using an Interactive Tool , 2015, IEEE Systems Journal.

[11]  Alexander Fay,et al.  Validierung von Steuerungscode mit Hilfe automatisch generierter Simulationsmodelle , 2015, Autom..

[12]  Eckehard Schnieder,et al.  Strukturierte Modellierung, Simulation und Überwachung verteilter Automatisierungssysteme , 2015, Autom..

[13]  Hyo-Sung Ahn,et al.  Consensus-Based Coordination and Control for Building Automation Systems , 2015, IEEE Transactions on Control Systems Technology.

[14]  Wolfgang Kastner,et al.  Building automation systems integration into the Internet of Things the IoT6 approach, its realization and validation , 2014, Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA).

[15]  Frank Golatowski,et al.  A model based development approach for building automation systems , 2014, Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA).

[16]  Weiren Shi,et al.  Building energy and control system modeling and simulation using Modelica , 2014, The 26th Chinese Control and Decision Conference (2014 CCDC).

[17]  Eckehard Schnieder,et al.  Das Petrinetz Modellierungs- und -analysetool Π-Tool , 2014, Autom..

[18]  Noël Crespi,et al.  Semantic Context-Aware Service Composition for Building Automation System , 2014, IEEE Transactions on Industrial Informatics.

[19]  Eugenio Di Sciascio,et al.  Semantic-Based Resource Discovery and Orchestration in Home and Building Automation: A Multi-Agent Approach , 2014, IEEE Transactions on Industrial Informatics.

[20]  A. Heidemann Integrale Planung der TGA , 2014 .

[21]  Eckehard Schnieder,et al.  Online monitoring of a distributed building automation system to verify large sequences of bus messages by causal Petri net models , 2013, IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society.

[22]  Klaus Kabitzsch,et al.  Optimal device placement planning for wireless building automation systems , 2013, 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA).

[23]  Peter B. Luh,et al.  Building Energy Management: Integrated Control of Active and Passive Heating, Cooling, Lighting, Shading, and Ventilation Systems , 2013, IEEE Transactions on Automation Science and Engineering.

[24]  Jan Haase,et al.  Efficient Building Automation Simulation Using System on Chip Simulation Techniques , 2013, ARCS Workshops.

[25]  J. Ploennigs,et al.  Sensors, models and platform for ambient control , 2012, IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society.

[26]  Manfred Broy,et al.  Model-Based Engineering of Embedded Systems: The SPES 2020 Methodology , 2012 .

[27]  Wolfgang Granzer,et al.  Information modeling in heterogeneous Building Automation Systems , 2012, 2012 9th IEEE International Workshop on Factory Communication Systems.

[28]  Antonio Moreno-Muñoz,et al.  Building lighting automation through the integration of DALI with wireless sensor networks , 2012, IEEE Transactions on Consumer Electronics.

[29]  R. Seifert Zukünftige Herausforderungen der Gebäudeautomation im Kontext neuer energetischer Rahmenbedingungen , 2012 .

[30]  Klaus Kabitzsch,et al.  Holistic design of wireless building automation systems , 2011, ETFA2011.

[31]  Alexander Fay,et al.  Software Support for Building Automation Requirements Engineering—An Application of Semantic Web Technologies in Automation , 2011, IEEE Transactions on Industrial Informatics.

[32]  Eugenio Di Sciascio,et al.  Semantic-Based Enhancement of ISO/IEC 14543-3 EIB/KNX Standard for Building Automation , 2011, IEEE Transactions on Industrial Informatics.

[33]  Ayman Sleman,et al.  SOA distributed operating system for managing embedded devices in home and building automation , 2011, 2011 IEEE International Conference on Consumer Electronics (ICCE).

[34]  Klaus Kabitzsch,et al.  Designing building automation systems using evolutionary algorithms with semi-directed variations , 2010, 2010 IEEE International Conference on Systems, Man and Cybernetics.

[35]  Alexander Klapproth,et al.  Towards semantic buildings: Goal-driven approach for building automation service allocation and control , 2010, 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010).

[36]  S Runde,et al.  Engineering of building automation systems — State-of-the-art, deficits, approaches , 2010, 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010).

[37]  Thomas Novak,et al.  Safety- and Security-Critical Services in Building Automation and Control Systems , 2010, IEEE Transactions on Industrial Electronics.

[38]  Klaus Kabitzsch,et al.  Automated Design of Building Automation Systems , 2010, IEEE Transactions on Industrial Electronics.

[39]  Klaus Kabitzsch,et al.  Automated design of room automation systems by using an evolutionary optimization method , 2009, 2009 IEEE Conference on Emerging Technologies & Factory Automation.

[40]  Klaus Kabitzsch,et al.  A semantic Requirement Ontology for the engineering of building automation systems by means of OWL , 2009, 2009 IEEE Conference on Emerging Technologies & Factory Automation.

[41]  W. Granzer,et al.  Integration of heterogeneous building automation systems using ontologies , 2008, 2008 34th Annual Conference of IEEE Industrial Electronics.

[42]  A.P. Kalogeras,et al.  Integration of Semantic Web Services and Ontologies into the Industrial and Building Automation Layer , 2007, EUROCON 2007 - The International Conference on "Computer as a Tool".

[43]  Harald Schrom Realisierung eines optimierten Feldbussystems und Modellierung mit Petrinetzen , 2003 .

[44]  Richard Riedl,et al.  Vergabe- und Vertragsordnung für Bauleistungen (VOB) Teil B: Allgemeine Vertragsbedingungen für die Ausführung von Bauleistungen , 2003 .

[45]  Laurian M. Chirica,et al.  The entity-relationship model: toward a unified view of data , 1975, SIGF.