A standing wave acoustic levitation system for large planar objects

An acoustic levitation system is presented which can levitate planar objects that are much larger than the wavelength of the applied acoustic wave. It uses standing wave field formed by the sound radiator and the levitated planar object. An experimental setup is developed, by which a compact disc is successfully levitated at frequency of 19 kHz and input power of 40 W. The sound field is modeled according to acoustic theory. The mean excess pressure experienced by the levitated object is calculated and compared with experiment results. The influences of the nonlinear effects within the acoustic near-field are discussed. Nonlinear absorption coefficient is introduced into the linear model to give a more precise description of the system. The levitation force is calculated for different levitation distances and driving frequencies. The calculation results show acceptable agreement with the measurement results.

[1]  James Friend,et al.  A Low-Profile Design for the Noncontact Ultrasonically Levitated Stage , 2005 .

[2]  Louis Vessot King,et al.  On the Acoustic Radiation Pressure on Spheres , 1934 .

[3]  M. Amabili,et al.  NATURAL FREQUENCIES AND MODES OF FREE-EDGE CIRCULAR PLATES VIBRATING IN VACUUM OR IN CONTACT WITH LIQUID , 1995 .

[4]  Izhak Bucher,et al.  Resonance tracking in a squeeze-film levitation device , 2006 .

[5]  P. J. Westervelt,et al.  The Mean Pressure and Velocity in a Plane Acoustic Wave in a Gas , 1950 .

[6]  Karl Bücks,et al.  Über einige Beobachtungen an schwingenden Piezoquarzen und ihrem Schallfeld , 1933 .

[7]  F. Holzweißig,et al.  A. W. Leissa, Vibration of Plates. (Nasa Sp‐160). VII + 353 S. m. Fig. Washington 1969. Office of Technology Utilization National Aeronautics and Space Administration. Preis brosch. $ 3.50 , 1971 .

[8]  P. J. Westervelt,et al.  Acoustic Radiation Pressure , 1957 .

[9]  Jörg Wallaschek,et al.  Load-adaptive phase-controller for resonant driven piezoelectric devices , 2003 .

[10]  Roland Siegwart,et al.  Squeeze Film Air Bearings Using Piezoelectric Bending Elements , 2000 .

[11]  K. Matsuda,et al.  Theoretical and experimental examination of near-field acoustic levitation. , 2002, The Journal of the Acoustical Society of America.

[12]  T. F. W. Embleton,et al.  Mean Force on a Sphere in a Spherical Sound Field. I. (Theoretical) , 1954 .

[13]  M. M. Saffren,et al.  Acoustic chamber for weightless positioning , 1974 .

[14]  H. B. A Textbook of Physics , 1935, Nature.

[15]  Shigeka Yoshimoto,et al.  Float characteristics of a squeeze-film air bearing for a linear motion guide using ultrasonic vibration , 2007 .

[16]  Charles H. Sherman,et al.  Transducers and Arrays for Underwater Sound , 2008 .

[17]  E. H. Trinh,et al.  Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity , 1985 .

[18]  Kentaro Nakamura,et al.  An analysis of a noncontact ultrasonic motor with an ultrasonically levitated rotor , 1997 .

[19]  Lord Rayleigh F.R.S. XXXIV. On the pressure of vibrations , 1902 .

[20]  T. A. Stolarski Self-lifting contacts: From physical fundamentals to practical applications , 2006 .

[21]  Robert E. Apfel,et al.  Response to the Comments of Nyborg and Rooney [J. Acoust. Soc. Am. 75, 263–264 (1984)] , 1984 .

[22]  L. Gor’kov,et al.  On the forces acting on a small particle in an acoustical field in an ideal fluid , 1962 .

[23]  P. J. Westervelt The Theory of Steady Forces Caused by Sound Waves , 1951 .

[24]  E. O. J. Salbu,et al.  Compressible Squeeze Films and Squeeze Bearings , 1964 .

[25]  W. Xie,et al.  Dynamics of acoustically levitated disk samples. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  G. Reinhart,et al.  Non-contact wafer handling using high-intensity ultrasonics , 2001, 2001 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (IEEE Cat. No.01CH37160).

[27]  C. P. Lee,et al.  Acoustic radiation pressure , 1992 .

[28]  W. J. Xie,et al.  Acoustic method for levitation of small living animals , 2006 .

[29]  Izhak Bucher,et al.  Levitation force induced by pressure radiation in gas squeeze films , 2004 .

[30]  Takahi Hasegawa,et al.  Acoustic‐Radiation Force on a Solid Elastic Sphere , 1969 .

[31]  Alain Delchambre,et al.  Non-contact handling in microassembly: Acoustical levitation , 2005 .

[32]  Malcolm J. Crocker,et al.  Handbook of Acoustics , 1998 .

[33]  R. R. Whymark,et al.  Acoustic field positioning for containerless processing , 1975 .

[34]  Sadayuki Ueha,et al.  Near‐field acoustic levitation of planar specimens using flexural vibration , 1996 .

[35]  M. Barmatz,et al.  Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields , 1985 .

[36]  I. Bucher,et al.  Coupled dynamics of a squeeze-film levitated mass and a vibrating piezoelectric disc: numerical analysis and experimental study , 2003 .

[37]  John William Strutt Scientific Papers: On the Pressure of Vibrations , 2009 .

[38]  W. J. Xie,et al.  Parametric study of single-axis acoustic levitation , 2001 .

[39]  Henry E. Bass,et al.  Erratum: Atmospheric absorption of sound: Further developments [J. Acoust. Soc. Am. 97, 680–683 (1995)] , 1996 .

[40]  Ueha,et al.  Non-contact transportation using near-field acoustic levitation , 1999, Ultrasonics.

[41]  Henry E. Bass,et al.  Atmospheric absorption of sound: Update , 1990 .

[42]  Koichiro Seya,et al.  Ultrasonic Levitation by Stepped Circular Vibrating Plate , 1990 .

[43]  A. J. Zuckerwar,et al.  Atmospheric absorption of sound: Further developments , 1995 .

[44]  P. F. Clancy,et al.  Acoustic Positioning for Space Processing of Materials Science Samples in Mirror Furnaces , 1983 .