A tensile strength model for unidirectional fiber-reinforced brittle matrix composite

A model for the ultimate tensile strength of unidirectional fiber-reinforced brittle matrix composite is presented. In the model, transverse matrix crack spacing and change in debonding length between the fiber and the matrix is continuously monitored with increasing applied load. A detailed approximate stress analysis, together with a Weibull failure statistics for fiber fracture, are used to determine the probability of fiber fracture and fiber fracture location in the composite. Results of the model are consistent with experimental data. It is suggested from the results that the strength and toughness of the composite are significantly influenced by the Weibull modulus of the fiber and the fiber/matrix interfacial shear stress. A higher fiber Weibull modulus results in a lower composite strength while a higher fiber/matrix interfacial shear stress results in a composite with higher strength but lower toughness. A moderate variation in matrix strength and fiber/matrix interfacial shear strength does not significantly affect the strength of the composite.

[1]  L. Sawyer,et al.  Strength, structure, and fracture properties of ceramic fibers produced from polymeric precursors. I: Base-line studies , 1987 .

[2]  Lawrence T. Drzal,et al.  Axisymmetric Stress Distribution Around an Isolated Fiber Fragment , 1987 .

[3]  John W. Hutchinson,et al.  Models of fiber debonding and pullout in brittle composites with friction , 1990 .

[4]  T. Chou,et al.  On matrix cracking in fiber reinforced ceramics , 1993 .

[5]  R. Arridge,et al.  The effect of interfacial radial and shear stress on fibre pull-out in composite materials , 1973 .

[6]  Kang Xu,et al.  Micromechanical model of crack growth in fiber reinforced ceramics. Final report , 1990 .

[7]  C. Hsueh,et al.  Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites , 1990 .

[8]  David B. Marshall,et al.  Analysis of fiber debonding and sliding experiments in brittle matrix composites , 1992 .

[9]  Asd Wang,et al.  Matrix crack initiation in ceramic matrix composites Part I: Experiments and test results , 1992 .

[10]  John A. Nairn,et al.  A variational mechanics analysis of the stresses around breaks in embedded fibers , 1992 .

[11]  I. Finnie,et al.  On the location of fracture in brittle solids-I , 1970 .

[12]  J. Amirbayat,et al.  Properties of unit composites as determined by the properties of the interface. Part I: Mechanism of matrix-fibre load transfer , 1970 .

[13]  Jang-Kyo Kim,et al.  Interfacial debonding and fibre pull-out stresses , 1992 .

[14]  A. Evans,et al.  The mechanics of matrix cracking in brittle-matrix fiber composites , 1985 .

[15]  Y. Mai,et al.  Instability of interfacial debonding during fibre pull-out , 1991 .

[16]  A study of the stress-transfer characteristics in model composites as a function of material processing, fibre sizing and temperature of the environment , 1997 .

[17]  François Hild,et al.  Matrix cracking and debonding of ceramic-matrix composites , 1996 .

[18]  H. Wu,et al.  Weibull analysis of strength-length relationships in single Nicalon SiC fibres , 1992 .

[19]  P. Lawrence,et al.  Some theoretical considerations of fibre pull-out from an elastic matrix , 1972 .

[20]  L. Greszczuk Theoretical Studies of the Mechanics of the Fiber-Matrix Interface in Composites , 1969 .

[21]  Anthony G. Evans,et al.  The Mechanical Behavior of Ceramic Matrix Composites , 1989 .

[22]  L. N. McCartney,et al.  New theoretical model of stress transfer between fibre and matrix in a uniaxially fibre-reinforced composite , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  B. Cotterell,et al.  Fracture of fiber-reinforced materials , 1988 .

[24]  E. Sternberg,et al.  Elastostatic load-transfer to a half-space from a partially embedded axially loaded rod , 1970 .

[25]  C. Galiotis,et al.  Measurement of stress concentration around fibre breaks in carbon-fibre/epoxy-resin composite tows , 1997 .

[26]  William A. Curtin,et al.  Strength and reliability of fiber-reinforced composites: Localized load-sharing and associated size effects , 1997 .

[27]  L. Schadler,et al.  Stress concentration phenomenon in graphite/epoxy composites: Tension/compression effects , 1997 .

[28]  P. Steif,et al.  A theory for the ultimate strength of a brittle-matrix composite , 1990 .

[29]  M. D. Thouless,et al.  Effects of pull-out on the mechanical properties of ceramic-matrix composites , 1988 .

[30]  Brian N. Cox,et al.  Tensile fracture of brittle matrix composites: influence of fiber strength , 1987 .

[31]  William A. Curtin,et al.  THEORY OF MECHANICAL-PROPERTIES OF CERAMIC-MATRIX COMPOSITES , 1991 .

[32]  M. Sutcu,et al.  Weibull statistics applied to fiber failure in ceramic composites and work of fracture , 1989 .

[33]  Peter W. R. Beaumont,et al.  Debonding and pull-out processes in fibrous composites , 1985 .

[34]  D. Buckley,et al.  Friction, deformation and fracture of single-crystal silicon carbide , 1979 .

[35]  S. L. Phoenix,et al.  Weibull strength statistics for graphite fibres measured from the break progression in a model graphite/glass/epoxy microcomposite , 1991 .

[36]  L. N. McCartney,et al.  Mechanics of matrix cracking in brittle-matrix fibre-reinforced composites , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[37]  N. Pagano,et al.  Crack Initiation in Unidirectional Brittle‐Matrix Composites , 1991 .

[38]  A. Evans,et al.  Debonding Properties of Residually Stressed Brittle-Matrix Composites , 1989 .

[39]  A. Kelly,et al.  Theory of multiple fracture of fibrous composites , 1973 .

[40]  Asd Wang,et al.  Matrix crack initiation in ceramic matrix composites Part II: Models and simulation results , 1992 .

[41]  Surendra P. Shah,et al.  Multiple fracture of fiber-reinforced brittle matrix composites based on micromechanics , 1992 .

[42]  J. G. Keer,et al.  On the theoretical average crack spacing in brittle matrix composites containing continuous aligned fibres , 1982 .

[43]  A. Evans,et al.  Failure Mechanisms in Ceramic‐Fiber/Ceramic‐Matrix Composites , 1985 .

[44]  J. D. B. Veldkamp,et al.  Crack Formation during Scratching of Brittle Materials , 1978 .

[45]  B. Budiansky,et al.  Steady-state matrix cracking of ceramics reinforced by aligned fibers and transforming particles , 1993 .

[46]  T. Chou,et al.  Multiple Cracking of Unidirectional and Cross‐PlyCeramic Matrix Composites , 1995 .

[47]  W. Curtin,et al.  Ultimate strengths of fibre-reinforced ceramics and metals , 1993 .

[48]  R. Naik Simplified micromechanical equations for thermal residual stress analysis of coated fiber composites , 1992 .

[49]  T. Peijs,et al.  Failure phenomena in two-dimensional multi-fibre microcomposites—3. A raman spectroscopy study of the influence of interfacial debonding on stress concentrations , 1997 .

[50]  D. Buckley,et al.  Friction and Fracture of Single-Crystal Silicon Carbide in Contact with Itself and Titanium , 1979 .

[51]  Y. Mai,et al.  Interfacial debonding and fibre pull-out stresses , 1992 .

[52]  A. Evans,et al.  Matrix fracture in fiber-reinforced ceramics , 1986 .

[53]  Peter Schwartz,et al.  Experiments on shear deformation, debonding and local load transfer in a model graphite/glass/epoxy microcomposite , 1991 .

[54]  A. Evans,et al.  Effects of residual stress and frictional sliding on cracking and pull-out in brittle matrix composites , 1989 .

[55]  William A. Curtin,et al.  Failure of fiber composites: A lattice Green function model , 1995 .

[56]  R. Bradt,et al.  Strength Distribution of Reinforcing Fibers in a Nicalon Fiber/Chemically Vapor Infiltrated Silicon Carbide Matrix Composite , 1989 .

[57]  K. Trustrum,et al.  On estimating the Weibull modulus for a brittle material , 1979 .