Heating characteristics of western hemlock (Tsuga heterophylla) in a high frequency field

The research aimed to establish whether dielectric heating of wood at high frequency could be accomplished fast, without excessive temperature fluctuations and no wood degrade. The intention was to develop optimized dielectric heating schedules in order to effectively pasteurize green timbers and logs for export—an eco-friendly substitute to currently used toxic chemical method. Data analysis revealed that the electric field distribution within the specimen was a strong function of its dielectric properties. Specifically, homogeneous moisture contents generated constant electric field values while heterogeneous distributions generated sudden drops and raises of the electric field strength with heating uniformly dispersed due to a fast redistribution from hot to colder areas. Convection losses through air contact may reduce the average heating rate of the timber shell by about 50%.ZusammenfassungIn dieser Studie wurde untersucht, ob Hochfrequenzerhitzung von Holz schnell und ohne übermäßige Temperaturschwankungen und ohne Beeinträchtigung der Holzqualität durchgeführt werden kann. Ziel war es, ein optimiertes Erhitzungsprogramm zur effektiven phytosanitären Behandlung von für den Export bestimmtem Schnitt- und Rundholz zu entwickeln – als umweltfreundliche Alternative zu den gegenwärtig verwendeten toxischen chemischen Verfahren. Die Versuchsergebnisse zeigten, dass die Verteilung des elektrischen Feldes im Prüfkörper stark von dessen dielektrischen Eigenschaften abhing. Eine homogene Holzfeuchte ergab konstante elektrische Feldwerte. Eine heterogene Holzfeuchteverteilung führte zu plötzlichen Ab- und Anstiegen der elektrischen Feldstärke, jedoch wegen einer schnellen Umverteilung zwischen heißen und kalten Bereichen zu einer gleichmäßigen Aufheizung. Wärmeverluste durch Luftkontakt können die mittlere Aufheizrate der Schnittholzoberfläche um bis zu 50 % verringern.

[1]  Tadashi Yamada,et al.  Anisotropy of Dielectric Constant in Coniferous Wood , 1978 .

[2]  Misato Norimoto,et al.  Dielectric Properties of Wood , 1976 .

[3]  Grigoriy I. Torgovnikov,et al.  Dielectric Properties of Wood and Wood-Based Materials , 1993, Springer Series in Wood Science.

[4]  Stavros Avramidis,et al.  Radio frequency heating pasteurization of pine wood nematode (Bursaphelenchus xylophilus) infected wood , 2011, European Journal of Wood and Wood Products.

[5]  Patrick Perré,et al.  Drying with internal heat generation: Theoretical aspects and application to microwave heating , 1996 .

[6]  W. Kauman HIGH-FREQUENCY ELECTRIC CURRENT FOR DRYING OF WOOD – HISTORICAL PERSPECTIVES , 2006 .

[7]  S. Avramidis Radio-frequency/vacuum drying of softwood : drying of thick western red cedar with constant electrode voltage , 1994 .

[8]  K. Halbach,et al.  Superfish-a Computer Program for Evaluation of RF Cavities with Cylindrical Symmetry , 1976 .

[9]  S. Avramidis,et al.  On the loss factor of wood during radio frequency heating , 1999, Wood Science and Technology.

[10]  S. Avramidis,et al.  The demonstration of increased lumber value using optimized lumber sorting , 2004 .

[11]  William Salas,et al.  Temporal and Spatial Variations in Dielectric Constant and Water Status of Dominant Forest Species from New England , 1994 .

[12]  Stavros Avramidis,et al.  Pasteurization of hemlock by radio frequency heating: a preliminary study. , 2009 .

[13]  Shaojin Wang,et al.  Radio frequency treatments for insect disinfestation of dried legumes , 2010 .

[14]  Stephen D. Cosper,et al.  Remilling of salvaged wood siding coated with lead-based paint. Part 1. Lead exposure , 2005 .

[15]  Stavros Avramidis,et al.  Radio-Frequency Heating Kinetics of Softwood Logs , 2011 .

[16]  M. Stevens,et al.  Dielectric properties of softwood species at microwave frequencies , 1984, Wood Science and Technology.