The DRASTIC-Sg model: an extension to the DRASTIC approach for mapping groundwater vulnerability in aquifers subject to differential land subsidence, with application to Mexico City

Mexico City relies on groundwater for most of its domestic supply. Over the years, intensive pumping has led to significant drawdowns and, subsequently, to severe land subsidence. Tensile cracks have also developed or reactivated as a result. All such processes cause damage to urban infrastructure, increasing the risk of spills and favoring contaminant propagation into the aquifer. The effects of ground deformation are frequently ignored in groundwater vulnerability studies, but can be relevant in subsiding cities. This report presents an extension to the DRASTIC methodology, named DRASTIC-Sg, which focuses on evaluating groundwater vulnerability in urban aquifers affected by differential subsidence. A subsidence parameter is developed to represent the ground deformation gradient (Sg), and then used to depict areas where damage risk to urban infrastructure is higher due to fracture propagation. Space-geodetic SqueeSAR data and global positioning system (GPS) validation were used to evaluate subsidence rates and gradients, integrating hydrogeological and geomechanical variables into a GIS environment. Results show that classic DRASTIC approaches may underestimate groundwater vulnerability in settings such as the one at hand. Hence, it is concluded that the Sg parameter is a welcome contribution to develop reliable vulnerability assessments in subsiding basins.RésuméLa ville de Mexico est dépendante de l’eau souterraine pour l’essentiel de son usage domestique. Au fil des années, les pompages intensifs ont conduit à des abaissements importants du niveau piézométrique et par conséquence à d’important affaissement de terrain. Des fissures de tension se sont développées ou ont été réactivées. Tous ces processus causent des dommages sur les infrastructures urbaines augmentant le risque de fuites favorisant la propagation de contaminants dans l’aquifère. Les effets des déformations du sol sont souvent ignorés dans les études de vulnérabilité des eaux souterraines, mais peuvent être pertinents pour les villes soumises à des affaissements de terrain. Cet article présente un développement de la méthodologie DRASTIC, nommée DRASTIC-Sg, ciblant l’évaluation de la vulnérabilité des eaux souterraines pour des aquifères en milieu urbain impactés par un affaissement différentiel des terrains. Un paramètre affaissement est développé pour représenter le gradient de déformation du sol, et ensuite utilisé pour décrire les zones où les risques de dommage des infrastructures urbaines sont plus élevés dus à la propagation des fractures. Les données spatiales et de géodésie (SqueeSAR) et les données de validation du système global de positionnement (GPS) ont été utilisées pour évaluer les vitesses d’affaissement des terrains et les gradients, intégrant les variables hydrogéologiques et géomécaniques dans un système d’information géographique. Les résultats montrent que les approches classiques DRASTIC sous-estiment la vulnérabilité des eaux souterraines dans des environnements tels que celui de la ville de Mexico. Par conséquence, on conclut que l’ajout du paramètre Sg contribue à élaborer des évaluations fiables de la vulnérabilité dans des bassins subsidents.ResumenLa ciudad de México depende del agua subterránea para la mayoría de sus abastecimientos domésticos. A través de los años, el bombeo intensivo ha llevado a depresiones significativas y, subsecuentemente, a una severa subsidencia del terreno. Como resultado también se han desarrollado o reactivado fracturas de tensión. Tales fenómenos han causado daños a la infraestructura urbana, incrementando el riesgo de vertidos y favoreciendo la propagación de contaminantes en el acuífero. Los efectos de la deformación del terreno son frecuentemente ignorados en los estudios de vulnerabilidad del agua subterránea, pero pueden ser relevantes en las ciudades subsidentes. Este trabajo presenta una extensión de la metodología DRASTIC, denominada DRASTIC-Sg, que se enfoca para evaluar la vulnerabilidad del agua subterránea en acuíferos afectados por subsidencia diferencial. Se desarrolla un parámetro de subsidencia para representar el gradiente de deformación del terreno (Sg), y luego se usa para delinear áreas donde el riesgo al daño para la infraestructura urbana es mayor debido a la propagación de las fracturas. Se usaron datos de espacio geodético SqueeSAR y la validación por el sistema de posicionamiento global (GPS) para evaluar las tasas y gradientes de subsidencia, integrando variables hidrogeológicas y geomecánicas en un ambiente GIS. Los resultados muestran que el enfoque DRASTIC clásico puede subestimar la vulnerabilidad del agua subterránea en configuraciones como la que nos ocupa. Por lo tanto, se concluye que el parámetro Sg es una contribución bienvenida para desarrollar evaluaciones confiables de vulnerabilidad en cuencas subsidentes.摘要墨西哥城大部分家庭用水依赖地下水。多年以来,强烈开采地下水 导致地下水水位大幅下降低,并由此造成严重的地面沉降。还使拉伸缝进 一步发育或使原来的拉伸缝再度激活。所有这些过程对城市基础设施造成 损坏,增加泄漏物和污染物进入含水层的风险。地面变形的影响在地下水 脆弱性研究中经常受到忽略,但在沉降的城市中有重要意义。本文介绍了 DRASTIC 方法的延伸,即DRASTIC-Sg。这个方法聚焦于评价受不同沉 降影响的城市含水层中地下水的脆弱性。找到了代表地面变形梯度(Sg)的 沉降参数,用来描述由于断裂蔓延造成对城市基础设施损害风险较高的地 区。太空大地测量SqueeSAR 资料和全球定验证用来评价沉降速度和梯 度,把水文地质变量和岩土力学变量整合在地理信息系统环境中。结果显 示,传统的DRASTIC 方法可能低估所研究的环境中地下水的脆弱性。因 此,结论就是,在进行沉降盆地可靠的脆弱性评价中,Sg 参数是一个积 极贡献。ResumoA Cidade do México depende de águas subterrâneas para a maior parte do seu abastecimento doméstico. Ao longo dos anos, bombeamentos intensivos levaram a significativos decréscimos do nível freático e, subsequentemente, a severa subsidência de terrenos. Como resultado, foram desenvolvidas ou reativadas fendas de tração. Todos estes processos causam danos nas infraestruturas urbanas, aumentando o risco de derramamentos e favorecendo a propagação da contaminação no aquífero. Os efeitos da deformação dos terrenos são frequentemente ignorados nos estudos de vulnerabilidade das águas subterrâneas, mas podem ser significativos em cidades sob subsidência. Este artigo apresenta uma extensão à metodologia DRASTIC, denominada DRASTIC-Sg, que se foca na avaliação da vulnerabilidade da água subterrânea em aquíferos urbanos afetados por subsidência diferencial. É desenvolvido um parâmetro de subsidência para representar o gradiente de deformação do solo (Sg), sendo depois usado para descrever áreas onde o risco de danos às infraestruturas urbanas é maior devido à propagação de fraturas. Foi usada validação com dados espaço-geodésicos SqueeSAR e sistemas de posicionamento global (GPS) para avaliar as taxas de subsidência e os gradientes, integrando variáveis hidrogeológicas e geomecânicas num ambiente SIG. Os resultados mostram que a abordagem DRASTIC clássica pode subestimar a vulnerabilidade da água subterrânea em ambientes como este. Conclui-se portanto que o parâmetro Sg é uma contribuição bem-vinda para o desenvolvimento de avaliações de vulnerabilidade em bacias em subsidência.

[1]  Lourdes Juárez-Marusich,et al.  Groundwater Vulnerability Assessment for Organic Compounds: Fuzzy Multicriteria Approach for Mexico City , 2006, Environmental management.

[2]  A. Ortega-Guerrero,et al.  Fracture hydraulic conductivity in the Mexico City clayey aquitard: Field piezometer rising-head tests , 2004 .

[3]  Devin L. Galloway,et al.  Impacts of land subsidence caused by withdrawal of underground fluids in the United States , 2005 .

[4]  R. K. Prasad,et al.  Application of drastic model and GIS: for assessing vulnerability in hard rock granitic aquifer , 2011, Environmental monitoring and assessment.

[5]  John A. Cherry,et al.  Large‐Scale Aquitard Consolidation Near Mexico City , 1993 .

[6]  Yi Peng,et al.  Developing a probability-based model of aquifer vulnerability in an agricultural region , 2013 .

[7]  Chung-Pai Chang,et al.  Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan , 2010 .

[8]  Timothy H. Dixon,et al.  Space geodetic imaging of rapid ground subsidence in Mexico City , 2008 .

[9]  Herman Bouwer,et al.  Land Subsidence and Cracking Due to Ground‐Water Depletiona , 1977 .

[10]  P. Burrough,et al.  Principles of geographical information systems , 1998 .

[11]  D. Allen,et al.  DRASTIC-Fm: a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia, Canada , 2007 .

[12]  S. Foster Groundwater Quality Protection: A Guide for Water Utilities, Municipal Authorities and Environment Agencies , 2002 .

[13]  L. Aller,et al.  Drastic: A Standardized System to Evaluate Groundwater Pollution Potential using Hydrogeologic Setting , 1987 .

[14]  J. J. Carrera-Hernández,et al.  Spatio-temporal analysis of potential aquifer recharge: Application to the Basin of Mexico , 2008 .

[15]  E. Frind,et al.  On the use of mean groundwater age, life expectancy and capture probability for defining aquifer vulnerability and time-of-travel zones for source water protection. , 2012, Journal of contaminant hydrology.

[16]  Christoph Butscher,et al.  Enhanced vulnerability assessment in karst areas by combining mapping with modeling approaches. , 2009, The Science of the total environment.

[17]  René Therrien,et al.  Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico , 2011 .

[18]  Nabor Carrillo,et al.  Influence of Artesian Wells in the Sinking of Mexico City , 1947 .

[19]  K. R. Rushton,et al.  NUMERICAL METHOD OF PUMPING TEST ANALYSIS USING MICROCOMPUTERS , 1984 .

[20]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[21]  R. Palomera,et al.  Geología de la cuenca de México , 1989 .

[22]  C. Hidalgo-Moreno,et al.  Mecanismos de fracturamiento de depósitos arcillosos en zonas urbanas. Caso de deformación diferencial en Chalco, Estado de México , 2006 .

[23]  Héctor Massone,et al.  Groundwater Vulnerability Assessment Combining the Drastic and Dyna-Clue Model in the Argentine Pampas , 2011, Environmental management.

[24]  J. M. Cohen,et al.  Mexico City : México , 1965 .

[25]  J. J. Carrera-Hernández,et al.  Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico , 2007 .

[26]  K. R. Rushton,et al.  Interpretation of Pumping from Two‐Zone Layered Aquifers Using a Numerical Model , 1991 .

[27]  Claudio Prati,et al.  A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[28]  P. AlbertoJaime,et al.  Evolution of Mexico City clay properties affected by land subsidence , 2010 .

[29]  J. A. R. Leal,et al.  Aquifer vulnerability and groundwater quality in mega cities: case of the Mexico Basin , 2010 .

[30]  Devin L. Galloway,et al.  Detection and measurement of land subsidence using interferometric synthetic aperture radar and Global Positioning System, San Bernardino County, Mojave Desert, California , 2003 .

[31]  S. Saatchi,et al.  InSAR monitoring of progressive land subsidence in Neyshabour, northeast Iran , 2009 .

[32]  J. Carrillo-Rivera,et al.  Chemical response to groundwater extraction southeast of Mexico City , 2004 .

[33]  N. Lambrakis,et al.  Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS , 2006 .

[34]  Massimo Civita,et al.  SINTACS: Un sistema parametrico per la valutazione e la cartografia delle vulnerabilità degli acquiferi all'inquinamento. Metodologia e automatizzazione , 1997 .

[35]  F. Tupin,et al.  Time series analysis of Mexico City subsidence constrained by radar interferometry , 2009 .

[36]  Jorge López Blanco,et al.  Mapeo geomorfológico analítico de la porción central de la Cuenca de México: unidades morfogenéticas a escala 1:100,000 , 2002 .

[37]  Cristiano Ballabio,et al.  Reliability of groundwater vulnerability maps obtained through statistical methods. , 2011, Journal of environmental management.

[38]  D. Galloway,et al.  The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology , 2007 .

[39]  Ó. Escolero,et al.  New constraints on the subsurface geology of the Mexico City Basin: The San Lorenzo Tezonco deep well, on the basis of 40Ar/39Ar geochronology and whole-rock chemistry , 2013 .

[40]  T. Burbey,et al.  Review: Regional land subsidence accompanying groundwater extraction , 2011 .

[41]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[42]  K. Rushton,et al.  Seepage and groundwater flow : numerical analysis by analog and digital methods , 1979 .

[43]  Teamrat A. Ghezzehei,et al.  Modeling post-tillage soil structural dynamics: a review , 2002 .

[44]  D. Ducci,et al.  Vulnerability mapping of groundwater contamination based on 3D lithostratigraphical models of porous aquifers. , 2013, The Science of the total environment.

[45]  Yan Jiang,et al.  City subsidence observed with persistent scatterer InSAR , 2010 .

[46]  Massimo Civita,et al.  Valutazione e cartografia automatica della vulnerabilità degli acquiferi all'inquinamento con il sistema parametrico - SINTACS R5 - A new parametric system for the assessment and automatic mapping of ground water vulnerability to contamination. , 2000 .

[47]  J. Arvidsson,et al.  A subsoil compaction database: its development, structure and content , 2003 .

[48]  G. A. Perez-Cruz Estudio Sismológico de Reflexión del Subsuelo de la Ciudad de Mexico , 1988 .