Tropical infectious diseases: Metabolic maps and functions of the Plasmodium falciparum apicoplast

Discovery of a relict chloroplast (the apicoplast) in malarial parasites presented new opportunities for drug development. The apicoplast – although no longer photosynthetic – is essential to parasites. Combining bioinformatics approaches with experimental validation in the laboratory, we have identified more than 500 proteins predicted to function in the apicoplast. By comparison with plant chloroplasts, we have reconstructed several anabolic pathways for the parasite plastid that are fundamentally different to the analogous pathways in the human host and are potentially good targets for drug development. Products of these pathways seem to be exported from the apicoplast and might be involved in host-cell invasion.

[1]  School Botany , 2004, Nature.

[2]  R. H. Hall N6-(δ2-Isopentenyl)adenosine: Chemical Reactions, Biosynthesis, Metabolism, and Significance to the Structure and Function of †RNA , 1970 .

[3]  R. H. Hall N6-(delta 2-isopentenyl)adenosine: chemical reactions, biosynthesis, metabolism, and significance to the structure and function of tRNA. , 1970, Progress in nucleic acid research and molecular biology.

[4]  R. Rock Incorporation of 14 C-labelled fatty acids into lipids of rhesus erythrocytes and Plasmodium knowlesi in vitro. , 1971, Comparative biochemistry and physiology. B, Comparative biochemistry.

[5]  R. Rock Incorporation of 14 C-labelled non-lipid precursors into lipid of Plasmodium knowlesi in vitro. , 1971, Comparative biochemistry and physiology. B, Comparative biochemistry.

[6]  R. H. Hall CYTOKININS AS A PROBE OF DEVELOPMENTAL PROCESSES , 1973 .

[7]  A. Kilejian Circular mitochondrial DNA from the avian malarial parasite Plasmodium lophurae. , 1975, Biochimica et biophysica acta.

[8]  G. Holz,et al.  Lipids and the malarial parasite. , 1977, Bulletin of the World Health Organization.

[9]  J. Gorman,et al.  Isopentenyladenosine deficient tRNA from an antisuppressor mutant of Saccharomyces cerevisiae. , 1978, Nucleic acids research.

[10]  H. Vial,et al.  Phospholipid metabolism as a new target for malaria chemotherapy. Mechanism of action of D-2-amino-1-butanol. , 1984, Biochemical pharmacology.

[11]  D. Wettstein,et al.  tRNAGlu as a cofactor in δ-aminolevulinate biosynthesis: steps that regulate chlorophyll synthesis , 1988 .

[12]  D. Söll,et al.  The selenocysteine-inserting opal suppressor serine tRNA from E. coli is highly unusual in structure and modification. , 1989, Nucleic acids research.

[13]  T. Roche,et al.  Molecular biology and biochemistry of pyruvate dehydrogenase complexes 1 , 1990, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[14]  P. Orlean Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O mannosylation, and N glycosylation of protein in Saccharomyces cerevisiae , 1990, Molecular and cellular biology.

[15]  J. Sambrook,et al.  Correction of a defect in mammalian GPI anchor biosynthesis by a transfected yeast gene. , 1990, Science.

[16]  D. Wyse,et al.  Dominant mutations causing alterations in acetyl-coenzyme A carboxylase confer tolerance to cyclohexanedione and aryloxyphenoxypropionate herbicides in maize. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Gardner,et al.  Organisation and expression of small subunit ribosomal RNA genes encoded by a 35-kilobase circular DNA in Plasmodium falciparum. , 1991, Molecular and biochemical parasitology.

[18]  C. Howe,et al.  Plants without chlorophyll , 1991, Nature.

[19]  Jeffrey Green,et al.  Evidence for two protein‐lipoylation activities in Escherichia coli , 1991, FEBS letters.

[20]  J. Browse,et al.  Plant Lipids: Metabolism, Mutants, and Membranes , 1991, Science.

[21]  M. Gardner,et al.  The putative mitochondrial genome of Plasmodium falciparum. , 1991, The Journal of protozoology.

[22]  M. Gardner,et al.  Have malaria parasites three genomes? , 1991, Parasitology today.

[23]  J. Palmer Green ancestry of malarial parasites? , 1992, Current Biology.

[24]  R. Nothnagel,et al.  Parasiticidal effect of clindamycin on Toxoplasma gondii grown in cultured cells and selection of a drug-resistant mutant , 1992, Antimicrobial Agents and Chemotherapy.

[25]  G. Padmanaban,et al.  de novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. , 1992, Biochemical and biophysical research communications.

[26]  H. Vial,et al.  Malarial lipids. An overview. , 1992, Sub-cellular biochemistry.

[27]  G. Björk,et al.  Isolation of the gene (miaE) encoding the hydroxylase involved in the synthesis of 2-methylthio-cis-ribozeatin in tRNA of Salmonella typhimurium and characterization of mutants , 1993, Journal of bacteriology.

[28]  J. Ohlrogge,et al.  Cloning and characterization of the gene that encodes acetyl-coenzyme A carboxylase in the alga Cyclotella cryptica. , 1993, The Journal of biological chemistry.

[29]  J. Ohlrogge,et al.  Characteristics of the Gene That Encodes Acetyl‐CoA Carboxylase in the Diatom Cyclotella crypticaa , 1994, Annals of the New York Academy of Sciences.

[30]  G. Björk,et al.  Synthesis and function of isopentenyl adenosine derivatives in tRNA. , 1994, Biochimie.

[31]  T. Konishi,et al.  Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[32]  E. Pfefferkorn,et al.  Comparison of mutants of Toxoplasma gondii selected for resistance to azithromycin, spiramycin, or clindamycin , 1994, Antimicrobial Agents and Chemotherapy.

[33]  D. Job,et al.  Isolation and Characterization of Biotin Carboxylase from Pea Chloroplasts , 1995, Plant physiology.

[34]  T. Voelker,et al.  Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. , 1995, The Plant cell.

[35]  J. Ohlrogge,et al.  Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long-chain acyl-acyl carrier proteins. , 1995, Archives of biochemistry and biophysics.

[36]  D. Roos,et al.  Inhibition of cytoplasmic and organellar protein synthesis in Toxoplasma gondii. Implications for the target of macrolide antibiotics. , 1995, The Journal of clinical investigation.

[37]  W. Fish Lipid and Membrane Metabolism of the Malaria Parasite and the African Trypanosome , 1995 .

[38]  D. Roos,et al.  In vitro assays elucidate peculiar kinetics of clindamycin action against Toxoplasma gondii , 1995, Antimicrobial agents and chemotherapy.

[39]  R. Wilson,et al.  tRNA genes transcribed from the plastid-like DNA of Plasmodium falciparum. , 1995, Nucleic acids research.

[40]  H. Beier,et al.  Cysteine tRNAs of plant origin as novel UGA suppressors. , 1995, Nucleic acids research.

[41]  Miklós Müller,et al.  Biochemistry and Molecular Biology of Parasites , 1995 .

[42]  L. Pasteur Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus* , 1996 .

[43]  J. Schwender,et al.  Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. , 1996, The Biochemical journal.

[44]  X. Su,et al.  Current status of the Plasmodium falciparum genome project. , 1996, Molecular and biochemical parasitology.

[45]  J. Harwood Recent advances in the biosynthesis of plant fatty acids. , 1996, Biochimica et biophysica acta.

[46]  C. Wilson,et al.  Characterization of the delta-aminolevulinate synthase gene homologue in P. falciparum. , 1996, Molecular and biochemical parasitology.

[47]  M. Strath,et al.  Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. , 1996, Journal of molecular biology.

[48]  T. Konishi,et al.  Acetyl-CoA carboxylase in higher plants: most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. , 1996, Plant & cell physiology.

[49]  Geoffrey I. McFadden,et al.  Plastid in human parasites , 1996, Nature.

[50]  D. Gowda,et al.  Glycosylphosphatidylinositol Anchors Represent the Major Carbohydrate Modification in Proteins of Intraerythrocytic Stage Plasmodium falciparum* , 1997, The Journal of Biological Chemistry.

[51]  David S. Roos,et al.  A plastid organelle as a drug target in apicomplexan parasites , 1997, Nature.

[52]  S. Brunak,et al.  SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites , 1997 .

[53]  D. Downs,et al.  Characterization of thiL, Encoding Thiamin-monophosphate Kinase, in Salmonella typhimurium * , 1997, The Journal of Biological Chemistry.

[54]  W. Eisenreich,et al.  Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. Steup,et al.  Characterization of a novel eukaryotic ATP/ADP translocator located in the plastid envelope of Arabidopsis thaliana L. , 1997, The Plant journal : for cell and molecular biology.

[56]  A Weber,et al.  A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. , 1997, The Plant cell.

[57]  J. Palmer,et al.  A Plastid of Probable Green Algal Origin in Apicomplexan Parasites , 1997, Science.

[58]  R. Douce,et al.  Evidence for multiple forms of biotin holocarboxylase synthetase in pea (Pisum sativum) and in Arabidopsis thaliana: subcellular fractionation studies and isolation of a cDNA clone. , 1997, The Biochemical journal.

[59]  Z. Bonday,et al.  Heme Biosynthesis by the Malarial Parasite , 1997, The Journal of Biological Chemistry.

[60]  M. Strath,et al.  Thiostrepton binds to malarial plastid rRNA , 1997, FEBS letters.

[61]  Jörg Schwender,et al.  Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate‐independent pathway , 1997, FEBS letters.

[62]  H. Sakakibara,et al.  A Nitrate-Inducible Ferredoxin in Maize Roots (Genomic Organization and Differential Expression of Two Nonphotosynthetic Ferredoxin Isoproteins) , 1997, Plant physiology.

[63]  G. McFadden,et al.  Plastids in parasites of humans. , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[64]  A. D. de Graaf,et al.  Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[65]  G. McFadden,et al.  Plastids in apicomplexan parasites , 1997 .

[66]  V. Weissig,et al.  Topoisomerase II inhibitors induce cleavage of nuclear and 35-kb plastid DNAs in the malarial parasite Plasmodium falciparum. , 1997, DNA and cell biology.

[67]  J. Schwender,et al.  Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. , 1998, The Biochemical journal.

[68]  E V Koonin,et al.  Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. , 1998, Science.

[69]  B. M. Lange,et al.  A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[70]  D. Roos,et al.  Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[71]  D. Job,et al.  Purification and properties of the chloroplastic form of biotin holocarboxylase synthetase from Arabidopsis thaliana overexpressed in Escherichia coli. , 1998, European journal of biochemistry.

[72]  D. Chakrabarti,et al.  Protein prenyl transferase activities of Plasmodium falciparum. , 1998, Molecular and biochemical parasitology.

[73]  M. Daffé,et al.  Interactions between Mycobacterium tuberculosis and host cells: are mycobacterial sugars the key? , 1998, Trends in microbiology.

[74]  H. Vial,et al.  Antimalarial activity of 77 phospholipid polar head analogs: close correlation between inhibition of phospholipid metabolism and in vitro Plasmodium falciparum growth. , 1998, Blood.

[75]  D. Roos,et al.  Apicomplexan plastids as drug targets. , 1999, Trends in microbiology.

[76]  V. J. Peres,et al.  Active isoprenoid pathway in the intra-erythrocytic stages of Plasmodium falciparum: presence of dolichols of 11 and 12 isoprene units. , 1999, The Biochemical journal.

[77]  H. Lichtenthaler,et al.  Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. , 1999, Science.

[78]  Sean V. Taylor,et al.  Thiamin biosynthesis in prokaryotes , 1999, Archives of Microbiology.

[79]  R. Lill,et al.  The Essential Role of Mitochondria in the Biogenesis of Cellular Iron-Sulfur Proteins , 1999, Biological chemistry.

[80]  D. Gowda,et al.  Protein glycosylation in the malaria parasite. , 1999, Parasitology today.

[81]  D. Roos,et al.  Origin, targeting, and function of the apicomplexan plastid. , 1999, Current opinion in microbiology.

[82]  U. Flugge PHOSPHATE TRANSLOCATORS IN PLASTIDS. , 1999, Annual review of plant physiology and plant molecular biology.

[83]  T. Izard,et al.  The crystal structure of a novel bacterial adenylyltransferase reveals half of sites reactivity , 1999, The EMBO journal.

[84]  J. Blanchard,et al.  The Non‐Photosynthetic Plastid in Malarial Parasites and Other Apicomplexans is Derived from Outside the Green Plastid Lineage 1 , 1999, The Journal of eukaryotic microbiology.

[85]  R. Gwilliam,et al.  The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum , 1999, Nature.

[86]  W. V. Shaw,et al.  Purification and Characterization of Phosphopantetheine Adenylyltransferase from Escherichia coli * , 1999, The Journal of Biological Chemistry.

[87]  J. Chory,et al.  The Phosphoenolpyruvate/Phosphate Translocator Is Required for Phenolic Metabolism, Palisade Cell Development, and Plastid-Dependent Nuclear Gene Expression , 1999, Plant Cell.

[88]  Y. Takahashi,et al.  Hyperproduction of recombinant ferredoxins in escherichia coli by coexpression of the ORF1-ORF2-iscS-iscU-iscA-hscB-hs cA-fdx-ORF3 gene cluster. , 1999, Journal of biochemistry.

[89]  N. Lang-Unnasch,et al.  Sequence evidence for an altered genetic code in the Neospora caninum plastid. , 1999, International journal for parasitology.

[90]  W. Eisenreich,et al.  Cytidine 5'-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[91]  M. Strath,et al.  Antibiotic inhibitors of organellar protein synthesis in Plasmodium falciparum. , 1999, Protist.

[92]  R. Haselkorn,et al.  Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[93]  L. Bannister,et al.  The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis. , 1999, Protist.

[94]  J. Ohlrogge,et al.  Understanding in vivo carbon precursor supply for fatty acid synthesis in leaf tissue. , 2000, The Plant journal : for cell and molecular biology.

[95]  G. McFadden,et al.  Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway , 2000, The EMBO journal.

[96]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[97]  R. Wilson,et al.  Impact of a plastid-bearing endocytobiont on apicomplexan genomes. , 2000, International journal for parasitology.

[98]  T. Cavalier-smith,et al.  Membrane heredity and early chloroplast evolution. , 2000, Trends in plant science.

[99]  S. Dhanasekaran,et al.  Import of host δ-aminolevulinate dehydratase into the malarial parasite: Identification of a new drug target , 2000, Nature Medicine.

[100]  B J Nikolau,et al.  The role of pyruvate dehydrogenase and acetyl-coenzyme A synthetase in fatty acid synthesis in developing Arabidopsis seeds. , 2000, Plant physiology.

[101]  J. Ohlrogge,et al.  Fatty acid synthesis: from CO2 to functional genomics. , 2000, Biochemical Society transactions.

[102]  S. J. Upton,et al.  Molecular analysis of a Type I fatty acid synthase in Cryptosporidium parvum. , 2000, Molecular and biochemical parasitology.

[103]  M. Emes,et al.  NONPHOTOSYNTHETIC METABOLISM IN PLASTIDS. , 2003, Annual review of plant physiology and plant molecular biology.

[104]  E. Gantt,et al.  Evidence of a Role for LytB in the Nonmevalonate Pathway of Isoprenoid Biosynthesis , 2000, Journal of bacteriology.

[105]  R. Lill,et al.  A mitochondrial ferredoxin is essential for biogenesis of cellular iron-sulfur proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[106]  M. Gleeson The plastid in Apicomplexa: what use is it? , 2000, International journal for parasitology.

[107]  Isoprenoid biosynthesis and drug targeting in the Apicomplexa. , 2000, Parasitology today.

[108]  W. Eisenreich,et al.  Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate to 2C-methyl-D-erythritol 2,4-cyclodiphosphate. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Characterization of an acyl-CoA synthetase from Arabidopsis thaliana. , 2000, Biochemical Society transactions.

[110]  J. Keithly,et al.  Cryptosporidium parvum appears to lack a plastid genome. , 2000, Microbiology.

[111]  H. Vial,et al.  Antimalarial activity of compounds interfering with Plasmodium falciparum phospholipid metabolism: comparison between mono- and bisquaternary ammonium salts. , 2000, Journal of medicinal chemistry.

[112]  A. Arakaki,et al.  Interaction of the targeting sequence of chloroplast precursors with Hsp70 molecular chaperones. , 2000, European journal of biochemistry.

[113]  W. Eisenreich,et al.  Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[114]  D. Roos,et al.  The Plastid of Toxoplasma gondii Is Divided by Association with the Centrosomes , 2000, The Journal of cell biology.

[115]  S. Ralph,et al.  The apicoplast as an antimalarial drug target. , 2001, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[116]  D. Roos,et al.  A plastid segregation defect in the protozoan parasite Toxoplasma gondii , 2001, The EMBO journal.

[117]  D. Gowda,et al.  Glycobiology of Plasmodium falciparum. , 2001, Biochimie.

[118]  N. Surolia,et al.  Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum , 2001, Nature Medicine.

[119]  K. Kirk,et al.  H+-coupled Pantothenate Transport in the Intracellular Malaria Parasite* , 2001, The Journal of Biological Chemistry.

[120]  D. Roos,et al.  Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. , 2001, Molecular biology and evolution.

[121]  G. McFadden,et al.  New agents to combat malaria , 2001, Nature Medicine.

[122]  D. Roos,et al.  Targeting and Processing of Nuclear-encoded Apicoplast Proteins in Plastid Segregation Mutants of Toxoplasma gondii* , 2001, The Journal of Biological Chemistry.

[123]  J. Sachs,et al.  The economic burden of malaria. , 2001, The American journal of tropical medicine and hygiene.

[124]  Peter K. Park,et al.  Identification of yacE (coaE) as the Structural Gene for Dephosphocoenzyme A Kinase inEscherichia coli K-12 , 2001, Journal of bacteriology.

[125]  Frank Seeber,et al.  Apicomplexan Parasites Possess Distinct Nuclear-encoded, but Apicoplast-localized, Plant-type Ferredoxin-NADP+ Reductase and Ferredoxin* , 2001, The Journal of Biological Chemistry.

[126]  W. Eisenreich,et al.  Studies on the nonmevalonate pathway to terpenes: The role of the GcpE (IspG) protein , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[127]  J. Wiesner,et al.  GcpE Is Involved in the 2-C-Methyl-d-Erythritol 4-Phosphate Pathway of Isoprenoid Biosynthesis in Escherichia coli , 2001, Journal of bacteriology.

[128]  W. Eisenreich,et al.  Biosynthesis of terpenoids. 2C-Methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) from Plasmodium falciparum. , 2001, European journal of biochemistry.

[129]  H. Wada,et al.  Identification of an Arabidopsis cDNA encoding a lipoyltransferase located in plastids , 2001, FEBS letters.

[130]  J Zuegge,et al.  Deciphering apicoplast targeting signals--feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. , 2001, Gene.

[131]  R. Haselkorn,et al.  Subcellular localization of acetyl-CoA carboxylase in the apicomplexan parasite Toxoplasma gondii , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[132]  James K. Stoops,et al.  The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[133]  J. Saldanha,et al.  Nifs and Sufs in malaria , 2001, Molecular microbiology.

[134]  W. Martin,et al.  Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants. A case study of endosymbiotic gene transfer. , 2002, European journal of biochemistry.

[135]  Candidate Drug Breaks Down Malaria's Walls , 2002, Science.

[136]  S. Rawsthorne Carbon flux and fatty acid synthesis in plants. , 2002, Progress in lipid research.

[137]  R. Wilson,et al.  The genome of Plasmodium falciparum encodes an active δ-aminolevulinic acid dehydratase , 2002, Current Genetics.

[138]  S. Varadharajan,et al.  Involvement of delta-aminolaevulinate synthase encoded by the parasite gene in de novo haem synthesis by Plasmodium falciparum. , 2002, The Biochemical journal.

[139]  H. Wada,et al.  The biosynthetic pathway for lipoic acid is present in plastids and mitochondria in Arabidopsis thaliana 1 , 2002, FEBS letters.

[140]  Jochen Wiesner,et al.  Fosmidomycin for malaria , 2002, The Lancet.

[141]  J. Wiesner,et al.  LytB protein catalyzes the terminal step of the 2‐C‐methyl‐D‐erythritol‐4‐phosphate pathway of isoprenoid biosynthesis , 2002, FEBS letters.

[142]  M. Gardner,et al.  Functional characterization of the acyl carrier protein (PfACP) and beta-ketoacyl ACP synthase III (PfKASIII) from Plasmodium falciparum. , 2002, Molecular and biochemical parasitology.

[143]  Jonathan E. Allen,et al.  Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii , 2002, Nature.

[144]  H. Vial,et al.  A Class of Potent Antimalarials and Their Specific Accumulation in Infected Erythrocytes , 2002, Science.

[145]  W. Eisenreich,et al.  Biosynthesis of terpenes: Studies on 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[146]  G. Zanetti,et al.  Ferredoxin-NADP+ Reductase and Ferredoxin of the Protozoan Parasite Toxoplasma gondii Interact Productivelyin Vitro and in Vivo * , 2002, The Journal of Biological Chemistry.

[147]  F. Seeber Biogenesis of iron-sulphur clusters in amitochondriate and apicomplexan protists. , 2002, International journal for parasitology.

[148]  M. King,et al.  A Green Algal Apicoplast Ancestor , 2002, Science.

[149]  Infectious diseases. Candidate drug breaks down malaria's walls. , 2002, Science.

[150]  J. Browse,et al.  Fatty Acid Export from the Chloroplast. Molecular Characterization of a Major Plastidial Acyl-Coenzyme A Synthetase from Arabidopsis1 , 2002, Plant Physiology.

[151]  J. Schug,et al.  The Plasmodium genome database , 2002, Nature.

[152]  J. Wiesner,et al.  Functional characterization of GcpE, an essential enzyme of the non‐mevalonate pathway of isoprenoid biosynthesis , 2002, FEBS letters.

[153]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[154]  W. Eisenreich,et al.  Studies on the nonmevalonate terpene biosynthetic pathway: Metabolic role of IspH (LytB) protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[155]  C. Rogier,et al.  Combating malaria in Africa. , 2002, Trends in parasitology.

[156]  G. McFadden,et al.  Processing of an Apicoplast Leader Sequence inPlasmodium falciparum and the Identification of a Putative Leader Cleavage Enzyme* , 2002, The Journal of Biological Chemistry.

[157]  D. Chakrabarti,et al.  Protein Farnesyltransferase and Protein Prenylation inPlasmodium falciparum * , 2002, The Journal of Biological Chemistry.

[158]  H. Panek,et al.  A whole genome view of prokaryotic haem biosynthesis. , 2002, Microbiology.

[159]  R. Wilson,et al.  Progress with parasite plastids. , 2002, Journal of molecular biology.

[160]  M. Rohmer,et al.  Isoprenoid biosynthesis through the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) is a [4Fe-4S] protein. , 2002, Angewandte Chemie.

[161]  Jochen Wiesner,et al.  Fosmidomycin, a Novel Chemotherapeutic Agent for Malaria , 2003, Antimicrobial Agents and Chemotherapy.

[162]  S. Prigge,et al.  The initiating steps of a type II fatty acid synthase in Plasmodium falciparum are catalyzed by pfACP, pfMCAT, and pfKASIII. , 2003, Biochemistry.

[163]  Aditi Gupta,et al.  Functional characterization of beta-ketoacyl-ACP reductase (FabG) from Plasmodium falciparum. , 2003, Biochemical and biophysical research communications.

[164]  R. Wilson,et al.  Proteobacteria-like ferrochelatase in the malaria parasite , 2003, Current Genetics.

[165]  Fuencisla Matesanz,et al.  The C-terminal domain of the Plasmodium falciparum acyl-CoA synthetases PfACS1 and PfACS3 functions as ligand for ankyrin. , 2003, Molecular and biochemical parasitology.

[166]  G. Sandberg,et al.  The Arabidopsis AtIPT8/PGA22 Gene Encodes an Isopentenyl Transferase That Is Involved in De Novo Cytokinin Biosynthesis1 , 2003, Plant Physiology.

[167]  M. Rohmer,et al.  Isoprenoid biosynthesis via the methylerythritol phosphate pathway: the (E)‐4‐hydroxy‐3‐methylbut‐2‐enyl diphosphate reductase (LytB/IspH) from Escherichia coli is a [4Fe–4S] protein , 2003, FEBS letters.

[168]  G. McFadden,et al.  Comment on "A Green Algal Apicoplast Ancestor" , 2003, Science.

[169]  Eve Syrkin Wurtele,et al.  Plant biotin-containing carboxylases. , 2003, Archives of biochemistry and biophysics.

[170]  S. Sharma,et al.  Identification, Characterization, and Inhibition of Plasmodium falciparum β-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ)* , 2003, Journal of Biological Chemistry.

[171]  S. Ralph,et al.  A Type II Pathway for Fatty Acid Biosynthesis Presents Drug Targets in Plasmodium falciparum , 2003, Antimicrobial Agents and Chemotherapy.

[172]  J. Schachtner,et al.  Apicomplexan parasites contain a single lipoic acid synthase located in the plastid , 2003, FEBS letters.

[173]  W. Eling,et al.  The N’-Terminal Domain of Glyceraldehyde-3-Phosphate Dehydrogenase of the Apicomplexan Plasmodium falciparum Mediates GTPase Rab2-Dependent Recruitment to Membranes , 2003, Biological chemistry.

[174]  Li Li,et al.  PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data , 2003, Nucleic Acids Res..

[175]  G. Schneider,et al.  Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. , 2003, Molecular and biochemical parasitology.

[176]  Christopher J. Tonkin,et al.  Dissecting Apicoplast Targeting in the Malaria Parasite Plasmodium falciparum , 2003, Science.

[177]  R. Wilson,et al.  Parasite plastids: maintenance and functions. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[178]  F. Seeber Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic apicomplexa. , 2003, Current drug targets. Immune, endocrine and metabolic disorders.

[179]  Guangli Zhu,et al.  Apicoplast genome of the coccidian Eimeria tenella. , 2003, Gene.

[180]  G. McFadden,et al.  The apicoplast: a plastid in Plasmodium falciparum and other Apicomplexan parasites. , 2003, International review of cytology.

[181]  H. Ohta,et al.  Subcellular localization of two types of ferrochelatase in cucumber , 2003, Planta.

[182]  P. Gallagher,et al.  The role of 2-methylthio-N6-isopentenyladenosine in readthrough and suppression of nonsense codons in Escherichia coli , 1983, Molecular and General Genetics MGG.

[183]  K. Haldar,et al.  Labeling and initial characterization of polar lipids in cultures ofPlasmodium falciparum , 2004, Parasitology Research.

[184]  M. Soares,et al.  Migration of the Plastid Genome to the Nucleus in a Peridinin Dinoflagellate , 2004, Current Biology.

[185]  M. Gardner,et al.  The evolutionary origin of the 35 kb circular DNA of Plasmodium falciparum: new evidence supports a possible rhodophyte ancestry , 1994, Molecular and General Genetics MGG.

[186]  Bindu Gajria,et al.  PlasmoDB: The Plasmodium Genome Resource , 2005 .

[187]  The Plasmodium genome database Designing and mining a eukaryotic genomics resource , .