Whole-Genome Sequencing in Autism Identifies Hot Spots for De Novo Germline Mutation

[1]  G. Rouleau,et al.  Parent–child exome sequencing identifiesa de novo truncating mutation in TCF4 in non‐syndromic intellectual disability , 2013, Clinical genetics.

[2]  Paz Polak,et al.  Differential relationship of DNA replication timing to different forms of human mutation and variation. , 2012, American journal of human genetics.

[3]  Jay Shendure,et al.  Estimating human mutation rate using autozygosity in a founder population , 2012, Nature Genetics.

[4]  R. Durbin,et al.  Revising the human mutation rate: implications for understanding human evolution , 2012, Nature Reviews Genetics.

[5]  S. Steinberg,et al.  Rate of de novo mutations and the importance of father’s age to disease risk , 2012, Nature.

[6]  Swapan Mallick,et al.  A direct characterization of human mutation based on microsatellites , 2012, Nature Genetics.

[7]  B. Schuster-Böckler,et al.  Chromatin organization is a major influence on regional mutation rates in human cancer cells , 2012, Nature.

[8]  Jacob J. Michaelson,et al.  forestSV: structural variant discovery through statistical learning , 2012, Nature Methods.

[9]  Kelly Schoch,et al.  Clinical application of exome sequencing in undiagnosed genetic conditions , 2012, Journal of Medical Genetics.

[10]  Kenny Q. Ye,et al.  De Novo Gene Disruptions in Children on the Autistic Spectrum , 2012, Neuron.

[11]  Michael F. Walker,et al.  De novo mutations revealed by whole-exome sequencing are strongly associated with autism , 2012, Nature.

[12]  Evan T. Geller,et al.  Patterns and rates of exonic de novo mutations in autism spectrum disorders , 2012, Nature.

[13]  J. Sebat,et al.  CNVs: Harbingers of a Rare Variant Revolution in Psychiatric Genetics , 2012, Cell.

[14]  Bradley P. Coe,et al.  Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations , 2012, Nature.

[15]  J. Sebat,et al.  High Frequencies of De Novo CNVs in Bipolar Disorder and Schizophrenia , 2011, Neuron.

[16]  Peer Bork,et al.  OGEE: an online gene essentiality database , 2011, Nucleic Acids Res..

[17]  M. DePristo,et al.  Variation in genome-wide mutation rates within and between human families , 2011, Nature Genetics.

[18]  Matthew W. Hahn,et al.  Pervasive Multinucleotide Mutational Events in Eukaryotes , 2011, Current Biology.

[19]  Diana V. Dugas,et al.  Protein Interactome Reveals Converging Molecular Pathways Among Autism Disorders , 2011, Science Translational Medicine.

[20]  M. Rieder,et al.  Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations , 2011, Nature Genetics.

[21]  Yiping Shen,et al.  Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research. , 2011, American journal of human genetics.

[22]  J. Sebat,et al.  Reduced transcript expression of genes affected by inherited and de novo CNVs in autism , 2011, European Journal of Human Genetics.

[23]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[24]  T. Kunkel,et al.  Mutator phenotypes due to DNA replication infidelity. , 2010, Seminars in cancer biology.

[25]  Joshua M. Korn,et al.  Accurately Assessing the Risk of Schizophrenia Conferred by Rare Copy-Number Variation Affecting Genes with Brain Function , 2010, PLoS genetics.

[26]  J. Milunsky,et al.  A de novo balanced translocation breakpoint truncating the autism susceptibility candidate 2 (AUTS2) gene in a patient with autism , 2010, American journal of medical genetics. Part A.

[27]  Ute Moog,et al.  Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation , 2010, Nature Genetics.

[28]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[29]  M. Lynch Rate, molecular spectrum, and consequences of human mutation , 2010, Proceedings of the National Academy of Sciences.

[30]  R. Uher,et al.  The role of genetic variation in the causation of mental illness: an evolution-informed framework , 2009, Molecular Psychiatry.

[31]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[32]  William Stafford Noble,et al.  Predicting Human Nucleosome Occupancy from Primary Sequence , 2008, PLoS Comput. Biol..

[33]  N. Siva 1000 Genomes project , 2008, Nature Biotechnology.

[34]  D. Cooper,et al.  Gene conversion: mechanisms, evolution and human disease , 2007, Nature Reviews Genetics.

[35]  J. Lupski,et al.  Genomic rearrangements and sporadic disease , 2007, Nature Genetics.

[36]  S. Sommer,et al.  Evidence for mutation showers , 2007, Proceedings of the National Academy of Sciences.

[37]  Juliane Hoyer,et al.  Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-Hopkins syndrome). , 2007, American journal of human genetics.

[38]  Nathalie Boddaert,et al.  Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. , 2007, American journal of human genetics.

[39]  Kenny Q. Ye,et al.  Strong Association of De Novo Copy Number Mutations with Autism , 2007, Science.

[40]  Valentino Romano,et al.  Association of a functional deficit of the BKCa channel, a synaptic regulator of neuronal excitability, with autism and mental retardation. , 2006, The American journal of psychiatry.

[41]  Haico van Attikum,et al.  The histone code at DNA breaks: a guide to repair? , 2005, Nature Reviews Molecular Cell Biology.

[42]  Hongkai Ji,et al.  Why do human diversity levels vary at a megabase scale? , 2005, Genome research.

[43]  Jean L. Chang,et al.  Initial sequence of the chimpanzee genome and comparison with the human genome , 2005, Nature.

[44]  H. Ellegren,et al.  Mutation rate variation in the mammalian genome. , 2003, Current opinion in genetics & development.

[45]  Hans Ellegren,et al.  Compositional evolution of noncoding DNA in the human and chimpanzee genomes. , 2003, Molecular biology and evolution.

[46]  Matthew Hurles,et al.  Are 100,000 "SNPs" Useless? , 2002, Science.

[47]  B. Shafer,et al.  The roles of REV3 and RAD57 in double-strand-break-repair-induced mutagenesis of Saccharomyces cerevisiae. , 2002, Genetics.

[48]  Martin J Lercher,et al.  Human SNP variability and mutation rate are higher in regions of high recombination. , 2002, Trends in genetics : TIG.

[49]  S. Rosenberg Evolving responsively: adaptive mutation , 2001, Nature Reviews Genetics.

[50]  J. Crow The origins, patterns and implications of human spontaneous mutation , 2000, Nature Reviews Genetics.

[51]  M. Nachman,et al.  Estimate of the mutation rate per nucleotide in humans. , 2000, Genetics.

[52]  Howard Ochman,et al.  Isochores result from mutation not selection , 1999, Nature.

[53]  J. Lupski Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. , 1998, Trends in genetics : TIG.

[54]  J Ninio,et al.  Transient mutators: a semiquantitative analysis of the influence of translation and transcription errors on mutation rates. , 1991, Genetics.

[55]  D. Ledbetter,et al.  Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. , 1981, The New England journal of medicine.

[56]  Philip J. Farabaugh,et al.  Molecular basis of base substitution hotspots in Escherichia coli , 1978, Nature.

[57]  J. B. S. Haldane,et al.  The rate of spontaneous mutation of a human gene , 1935, Journal of Genetics.

[58]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[59]  David Haussler,et al.  Covariation in frequencies of substitution, deletion, transposition, and recombination during eutherian evolution. , 2003, Genome research.

[60]  J. Svejstrup Transcription: Mechanisms of transcription-coupled DNA repair , 2002, Nature Reviews Molecular Cell Biology.

[61]  X. Estivill,et al.  Estimation of the Mutation Frequencies in Charcot-Marie-Tooth Disease Type 1 and Hereditary Neuropathy with Liability to Pressure Palsies: A European Collaborative Study , 1996, European journal of human genetics : EJHG.

[62]  J. Crow,et al.  A molecular approach to estimating the human deleterious mutation rate , 1993, Human mutation.

[63]  M. Delbrück,et al.  Induced mutations in bacterial viruses. , 1946 .