Prediction of corrosion behaviour of Alloy 22 using neural network as a data mining tool

Abstract Objective of this work was to develop an algorithm to predict behaviour of corrosion resistant metal alloys using a supervised neural network method as a data mining tool. We studied corrosion data on a nickel-based alloy, Alloy 22 which is of great industrial interest. This is an extension of a previously reported study on metallic glasses, carbon steel, and grade-2 titanium. The data mining results allow us to categorize and prioritize certain parameters (i.e. pH, temperature, time of exposure, electrolyte composition, metal composition, etc.) and help us understand the synergetic effects of the parameters and variables on corrosion behaviour.

[1]  H. K. D. H. Bhadeshia,et al.  Neural network analysis of strength and ductility of welding alloys for high strength low alloy shipbuilding steels , 2001 .

[2]  John R. Scully,et al.  Crevice Corrosion Stabilization and Repassivation Behavior of Alloy 625 and Alloy 22 , 2001 .

[3]  T. Ahn,et al.  Understanding long-term corrosion of Alloy 22 container in the potential Yucca Mountain repository for high-level nuclear waste disposal , 2008 .

[4]  D. Macdonald,et al.  An electrochemical impedance spectroscopic study of the passive state on Alloy-22 , 2006 .

[5]  Michael J. A. Berry,et al.  Mastering Data Mining: The Art and Science of Customer Relationship Management , 1999 .

[6]  D. Macdonald,et al.  An electrochemical impedance study of Alloy 22 in NaCl brine at elevated temperature. I. Corrosion behavior , 2004 .

[7]  G. Cragnolino,et al.  Localized Corrosion Susceptibility of Alloy 22 in Chloride Solutions: Part 1—Mill-Annealed Condition , 2005 .

[8]  M. Kamrunnahar,et al.  Prediction of corrosion behavior using neural network as a data mining tool , 2010 .

[9]  R. Rebak,et al.  Influence of Black Annealing Oxide Scale on the Anodic Behavior of Alloy 22 , 2005 .

[10]  D. Macdonald,et al.  An electrochemical impedance study of Alloy-22 in Nacl brine at elevated temperature : II. Reaction mechanism analysis , 2004 .

[11]  D. Mackay,et al.  Bayesian Neural Network Analysis of Fatigue Crack Growth Rate in Nickel Base Superalloys , 1996 .

[12]  Leif Karlsson,et al.  Optimization of Neural Network for Charpy Toughness of Steel Welds , 2008 .

[13]  G. Gordon,et al.  Corrosion Behavior of Alloy 22 and Ti Grade 7 in a Nuclear Waste Repository Environment , 2004 .

[14]  D. Dunn,et al.  Crevice Corrosion Penetration Rates of Alloy 22 in Chloride-Containing Waters , 2007 .

[15]  Fred Hua,et al.  Modeling Alloy 22 general corrosion in the Yucca Mountain nuclear waste repository , 2008 .

[16]  R. Rebak,et al.  Crevice Corrosion Resistance of Alloy 22 in High-Nitrate, High-Temperature Dust Deliquescence Environments , 2008 .

[17]  A. D. Davydov,et al.  The kinetics of hydrogen evolution and oxygen reduction on Alloy 22 , 2005 .

[18]  L. Wong,et al.  Corrosion Behavior of Alloy 22 in Oxalic Acid and Sodium Chloride Solutions , 2004 .

[19]  D. Dunn,et al.  Localized Corrosion Susceptibility of Alloy 22 in Chloride Solutions: Part 2 Effect of Fabrication Processes , 2006 .

[20]  J. Kelly,et al.  Annealing Effects on Mechanical and Transport Properties of Ni and Ni-Alloy Electrodeposits , 2006, Journal of Microelectromechanical Systems.

[21]  Takuya Yamamoto,et al.  Neural-network analysis of irradiation hardening in low-activation steels , 2006 .

[22]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[23]  David J. C. MacKay,et al.  Neural network model of creep strength of austenitic stainless steels , 2002 .

[24]  N. Sridhar,et al.  Effect of specimen preparation procedures on chromium depletion and precipitation chemistry in alloy 825 by analytical electron microscopy , 1996 .

[25]  O. Pensado,et al.  Probabilistic methodology to estimate environmental conditions for localized corrosion and stress corrosion cracking of Alloy 22 in a high-level radioactive waste repository setting , 2008 .

[26]  G. Cragnolino,et al.  Effect of simulated groundwater chemistry on stress corrosion cracking of alloy 22 , 2007 .

[27]  M. Urquidi-Macdonald Kohonen mapping of the crack growth under fatigue loading conditions of stainless steels in BWR environments and of nickel alloys in PWR environments , 2008 .

[28]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[29]  Djc MacKay,et al.  Neural network analysis of steel plate processing , 1998 .

[30]  Digby D. Macdonald,et al.  Development of fast algorithms for estimating stress corrosion crack growth rate , 1999 .

[31]  D. Dunn,et al.  The localized corrosion resistance and mechanical properties of alloy 22 waste package outer containers , 2005 .

[32]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[33]  R. Rebak,et al.  Influence of halide ions and alloy microstructure on the passive and localized corrosion behavior of alloy 22 , 2005 .

[34]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .