Tableau-Based Theorem Proving and Synthesis of Lambda-Terms in the Intuitionistic Logic

Because of its constructive aspect, the intuitionistic logic plays an important role in the context of the programming paradigm ”programming by proving”. Programs are expressed by λ-terms which can be seen as compact representations of natural deduction proofs. We are presenting a tableau calculus for the first-order intuitionistic logic which allows to synthesize λ-terms. The calculus is obtained from the tableau calculus for the classical logic by extending its rules by λ-terms. In each rule application and closing of tableau branches, λ-terms are synthesized by unification. Particularly, a new λ-term construct (implicit case analysis) is introduced for the the disjunction rules.