Extending Single Molecule Förster Resonance Energy Transfer (FRET) Range Beyond 10 Nanometers in Zero-Mode Waveguides.

Single molecule Förster resonance energy transfer (smFRET) is widely used to monitor conformations and interactions dynamics at the molecular level. However, conventional smFRET measurements are ineffective at donor-acceptor distances exceeding 10 nm, impeding the studies on biomolecules of larger size. Here, we show that zero-mode waveguide (ZMW) apertures can be used to overcome the 10 nm barrier in smFRET. Using an optimized ZMW structure, we demonstrate smFRET between standard commercial fluorophores up to 13.6 nm distance with a significantly improved FRET efficiency. To further break into the classical FRET range limit, ZMWs are combined with molecular constructs featuring multiple acceptor dyes to achieve high FRET efficiencies together with high fluorescence count rates. As we discuss general guidelines for quantitative smFRET measurements inside ZMWs, the technique can be readily applied for monitoring conformations and interactions on large molecular complexes with enhanced brightness.

[1]  A. Lutich,et al.  Accelerating fluorescence resonance energy transfer with plasmonic nanoresonators , 2011 .

[2]  A. Zayats,et al.  Förster Resonance Energy Transfer inside Hyperbolic Metamaterials , 2018, ACS Photonics.

[3]  P. Tinnefeld,et al.  Plasmon-assisted Förster resonance energy transfer at the single-molecule level in the moderate quenching regime. , 2019, Nanoscale.

[4]  M. Cinchetti,et al.  Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas , 2017, Light: Science & Applications.

[5]  Nam Ki Lee,et al.  Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study , 2017, Nature Methods.

[6]  H. Rigneault,et al.  Plasmonic Nanoantennas Enable Forbidden Förster Dipole-Dipole Energy Transfer and Enhance the FRET Efficiency. , 2016, Nano letters.

[7]  J. Wenger,et al.  Competition between Förster Resonance Energy Transfer and Donor Photodynamics in Plasmonic Dimer Nanoantennas , 2016 .

[8]  Yanhui Zhao,et al.  Dark-Field Illumination on Zero-Mode Waveguide/Microfluidic Hybrid Chip Reveals T4 Replisomal Protein Interactions , 2014, Nano letters.

[9]  Rahul Roy,et al.  A practical guide to single-molecule FRET , 2008, Nature Methods.

[10]  D. Norris,et al.  Plasmonic Films Can Easily Be Better: Rules and Recipes , 2015, ACS photonics.

[11]  P. Tinnefeld,et al.  Interchromophoric Interactions Determine the Maximum Brightness Density in DNA Origami Structures. , 2019, Nano letters.

[12]  Shimon Weiss,et al.  Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy , 2000, Nature Structural Biology.

[13]  Mikael Käll,et al.  FRET enhancement close to gold nanoparticles positioned in DNA origami constructs. , 2017, Nanoscale.

[14]  Nam Ki Lee,et al.  Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. , 2005, Biophysical journal.

[15]  Z. Jacob,et al.  Observation of long-range dipole-dipole interactions in hyperbolic metamaterials , 2018, Science Advances.

[16]  Paul R Selvin,et al.  Principles and biophysical applications of lanthanide-based probes. , 2002, Annual review of biophysics and biomolecular structure.

[17]  Ulrich Hohenester,et al.  Förster-type resonant energy transfer influenced by metal nanoparticles. , 2008, Nano letters.

[18]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[19]  H. Craighead,et al.  Zero-mode waveguides for single-molecule analysis. , 2012, Annual review of biophysics.

[20]  J E Hearst,et al.  Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Steve Blair,et al.  UV Fluorescence Lifetime Modification by Aluminum Nanoapertures , 2014 .

[22]  W. Vos,et al.  Foerster resonance energy transfer rate and local density of optical states are uncorrelated in any dielectric nanophotonic medium , 2015, 1507.06212.

[23]  J. R. Zurita-Sánchez,et al.  A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states. , 2013, The Journal of chemical physics.

[24]  Volodymyr Kudryavtsev,et al.  Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  M. Metzger,et al.  Controlling the dynamics of Förster resonance energy transfer inside a tunable sub-wavelength Fabry-Pérot-resonator. , 2015, Nanoscale.

[26]  L. Mátyus,et al.  Strength in numbers: effects of acceptor abundance on FRET efficiency. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[27]  Zygmunt Gryczynski,et al.  Extending Förster resonance energy transfer measurements beyond 100 Å using common organic fluorophores: enhanced transfer in the presence of multiple acceptors. , 2012, Journal of biomedical optics.

[28]  Tian Ming,et al.  Plasmon-Controlled Förster Resonance Energy Transfer , 2012 .

[29]  V. A. Klenchin,et al.  Observing Single-Molecule Dynamics at Millimolar Concentrations. , 2017, Angewandte Chemie.

[30]  M. Premaratne,et al.  Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror. , 2017, The Journal of chemical physics.

[31]  Hao Yan,et al.  Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler. , 2014, Nano letters.

[32]  Andreas Hartmann,et al.  farFRET: Extending the Range in Single-Molecule FRET Experiments beyond 10 nm. , 2015, Nano letters.

[33]  J. R. Zurita-Sánchez,et al.  Förster Energy Transfer in the Vicinity of Two Metallic Nanospheres (Dimer) , 2018, Plasmonics.

[34]  Antonino Ingargiola,et al.  Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transfer , 2018, Science.

[35]  H. Rigneault,et al.  Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture , 2015, Scientific Reports.

[36]  Yae-Lin Sheu,et al.  Characteristic Distance of Resonance Energy Transfer Coupled with Surface Plasmon Polaritons. , 2018, The journal of physical chemistry letters.

[37]  J. Enderlein Modification of Förster Resonance Energy Transfer Efficiency at Interfaces , 2012, International journal of molecular sciences.

[38]  L. Lanzanó,et al.  Plasmonic zero mode waveguide for highly confined and enhanced fluorescence emission. , 2018, Nanoscale.

[39]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[40]  N. V. Hulst,et al.  Nanophotonic boost of intermolecular energy transfer , 2015, 1510.02256.

[41]  Control of Förster energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials. , 2015, Faraday discussions.

[42]  N. L. Greenbaum,et al.  Triangulating Nucleic Acid Conformations Using Multicolor Surface Energy Transfer. , 2016, ACS nano.

[43]  J. Enderlein,et al.  Metal-induced energy transfer for live cell nanoscopy , 2014, Nature Photonics.

[44]  P. Tinnefeld,et al.  Breaking the concentration limit of optical single-molecule detection. , 2014, Chemical Society reviews.

[45]  Vladimir Lesnyak,et al.  Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers. , 2011, Nano letters.

[46]  J. Korlach,et al.  Length-Independent DNA Packing into Nanopore Zero-Mode Waveguides for Low-Input DNA Sequencing , 2017, Nature nanotechnology.

[47]  W. Barnes,et al.  Energy Transfer Across a Metal Film Mediated by Surface Plasmon Polaritons , 2004, Science.

[48]  W. Barnes,et al.  Förster energy transfer in an optical microcavity. , 2000, Science.

[49]  Fluorescence energy transfer enhancement in aluminum nanoapertures , 2015, 1504.00761.

[50]  L. Novotný,et al.  Antennas for light , 2011 .

[51]  Christoph Bräuchle,et al.  Pulsed interleaved excitation. , 2005, Biophysical journal.

[52]  R. Carminati,et al.  Magneto-optical control of Förster energy transfer , 2011 .

[53]  J. Widengren,et al.  Conceptual Basis of Fluorescence Correlation Spectroscopy and Related Techniques as Tools in Bioscience , 2003 .

[54]  R. Carminati,et al.  Long-Range Plasmon-Assisted Energy Transfer between Fluorescent Emitters. , 2015, Physical review letters.

[55]  Nam Ki Lee,et al.  Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. , 2007, Biophysical journal.

[56]  Hervé Rigneault,et al.  Enhancement of single-molecule fluorescence detection in subwavelength apertures. , 2005, Physical review letters.

[57]  R. Macdonald,et al.  Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy. , 2006, Journal of biomedical optics.

[58]  Jin Chen,et al.  High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence , 2013, Proceedings of the National Academy of Sciences.

[59]  Z. Jacob,et al.  Fundamental figures of merit for engineering Förster resonance energy transfer. , 2018, Optics express.

[60]  J. Wenger,et al.  Coupling Emitters and Silver Nanowires to Achieve Long-Range Plasmon-Mediated Fluorescence Energy Transfer. , 2016, ACS nano.

[61]  Michael J. McClain,et al.  Walking the Walk: A Giant Step toward Sustainable Plasmonics. , 2016, ACS nano.

[62]  T. Funatsu,et al.  Improving zero-mode waveguide structure for enhancing signal-to-noise ratio of real-time single-molecule fluorescence imaging: a computational study. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  B. Schuler,et al.  Single-molecule spectroscopy of protein folding dynamics--expanding scope and timescales. , 2013, Current opinion in structural biology.

[64]  F. Schleifenbaum,et al.  Dynamic control of Förster energy transfer in a photonic environment. , 2014, Physical chemistry chemical physics : PCCP.

[65]  J. Wenger,et al.  FRET enhancement in aluminum zero-mode waveguides. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[66]  C. Collier,et al.  A Comparison of Single-Molecule Emission in Aluminum and Gold Zero-Mode Waveguides. , 2016, The journal of physical chemistry. A.

[67]  Jian Zhang,et al.  Enhanced Förster Resonance Energy Transfer on Single Metal Particle. 2. Dependence on Donor-Acceptor Separation Distance, Particle Size, and Distance from Metal Surface. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[68]  N O Reich,et al.  Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. , 2005, Journal of the American Chemical Society.

[69]  H. Rigneault,et al.  Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations. , 2014, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[70]  S. Blair,et al.  Effect of Ga Implantation and Hole Geometry on Light Transmission through Nanohole Arrays in Al and Mg , 2018 .

[71]  H. Rigneault,et al.  Matching Nanoantenna Field Confinement to FRET Distances Enhances Förster Energy Transfer Rates. , 2015, Nano letters (Print).

[72]  A. Mosk,et al.  Nanophotonic control of the Förster resonance energy transfer efficiency. , 2011, Physical review letters.

[73]  Hervé Rigneault,et al.  Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures. , 2008, Optics express.

[74]  Peter Nordlander,et al.  Aluminum for plasmonics. , 2014, ACS nano.

[75]  L. Hesselink,et al.  Pulsed-interleaved excitation FRET measurements on single duplex DNA molecules inside C-shaped nanoapertures. , 2007, Nano letters.

[76]  Philip Tinnefeld,et al.  Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami. , 2011, Journal of the American Chemical Society.

[77]  G. Schatz,et al.  Plasmon-Coupled Resonance Energy Transfer. , 2017, The journal of physical chemistry letters.

[78]  Philip Mair,et al.  Programming Light-Harvesting Efficiency Using DNA Origami , 2016, Nano letters.

[79]  Francesco De Angelis,et al.  Site-selective functionalization of plasmonic nanopores for enhanced fluorescence emission rate and Förster resonance energy transfer , 2018, Nanoscale advances.

[80]  M Dahan,et al.  Ratiometric single-molecule studies of freely diffusing biomolecules. , 2001, Annual review of physical chemistry.

[81]  T. Shahbazyan,et al.  Resonance energy transfer near metal nanostructures mediated by surface plasmons , 2010, 1009.0553.

[82]  J. Widengren,et al.  Förster resonance energy transfer beyond 10 nm: exploiting the triplet state kinetics of organic fluorophores. , 2011, The journal of physical chemistry. B.

[83]  J. Wenger,et al.  Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures. , 2014, Nano letters.

[84]  M Dahan,et al.  Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[85]  J. Wenger,et al.  Direct Imaging of the Energy-Transfer Enhancement between Two Dipoles in a Photonic Cavity , 2019, Physical Review X.