The persistent cosmic web and its filamentary structure II: Illustrations

The recently introduced discrete persistent structure extractor (DisPerSE, Soubie 2010, paper I) is implemented on realistic 3D cosmological simulations and observed redshift catalogues (SDSS); it is found that DisPerSE traces equally well the observed filaments, walls, and voids in both cases. In either setting, filaments are shown to connect onto halos, outskirt walls, which circumvent voids. Indeed this algorithm operates directly on the particles without assuming anything about the distribution, and yields a natural (topologically motivated) self-consistent criterion for selecting the significance level of the identified structures. It is shown that this extraction is possible even for very sparsely sampled point processes, as a function of the persistence ratio. Hence astrophysicists should be in a position to trace and measure precisely the filaments, walls and voids from such samples and assess the confidence of the post-processed sets as a function of this threshold, which can be expressed relative to the expected amplitude of shot noise. In a cosmic framework, this criterion is comparable to friend of friend for the identifications of peaks, while it also identifies the connected filaments and walls, and quantitatively recovers the full set of topological invariants (Betti numbers) {\sl directly from the particles} as a function of the persistence threshold. This criterion is found to be sufficient even if one particle out of two is noise, when the persistence ratio is set to 3-sigma or more. The algorithm is also implemented on the SDSS catalogue and used to locat interesting configurations of the filamentary structure. In this context we carried the identification of an ``optically faint'' cluster at the intersection of filaments through the recent observation of its X-ray counterpart by SUZAKU. The corresponding filament catalogue will be made available online.

[1]  J. Huchra,et al.  A Slice of the Universe , 1985 .

[2]  G. Efstathiou,et al.  Numerical techniques for large cosmological N-body simulations , 1985 .

[3]  L. Costa,et al.  The largest possible voids , 1992 .

[4]  Marc Davis,et al.  Galaxy Tracers and Velocity Bias , 1995 .

[5]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[6]  The Cosmic Web and Filaments in Cluster Patches , 1996 .

[7]  Diffuse Microwave Emission Survey , 1996, astro-ph/9607100.

[8]  M. Fukugita,et al.  THE COSMIC BARYON BUDGET , 1997, astro-ph/9712020.

[9]  R. Cen,et al.  Where Are the Baryons , 1998, astro-ph/9806281.

[10]  G. Bryan,et al.  Simulating the X-Ray Forest , 2001, astro-ph/0108495.

[11]  R. Weygaert Froth Across the Universe , 2002 .

[12]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[13]  S. Colombi,et al.  Skeleton as a probe of the cosmic web : the two-dimensional case , 2003, astro-ph/0307003.

[14]  Y. Suto,et al.  Detectability of the Warm/Hot Intergalactic Medium through Emission Lines of O VII and O VIII , 2003, astro-ph/0303281.

[15]  Rien van de Weygaert,et al.  A hierarchy of voids: much ado about nothing , 2003, astro-ph/0311260.

[16]  P. Petitjean,et al.  Metals in the intergalactic medium , 2003, astro-ph/0307506.

[17]  J. Mateu,et al.  Detection of cosmic filaments using the Candy model , 2004, astro-ph/0405370.

[18]  Max Tegmark,et al.  NYU-VAGC: a galaxy catalog based on new public surveys , 2004 .

[19]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[20]  Soft X-Ray Transmission Spectroscopy of a Warm/Hot Intergalactic Medium with XEUS , 2005, astro-ph/0504594.

[21]  Ryuichi Fujimoto,et al.  The X-Ray Observatory Suzaku , 2007 .

[22]  R. Weygaert,et al.  A cosmic watershed: the WVF void detection technique , 2007, 0706.2788.

[23]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2007, Discret. Comput. Geom..

[24]  Vicent J. Martinez,et al.  A three‐dimensional object point process for detection of cosmic filaments , 2007, 0809.4358.

[25]  Oliver Hahn,et al.  Properties of dark matter haloes in clusters, filaments, sheets and voids , 2006, astro-ph/0610280.

[26]  S. Colombi,et al.  The three dimensional skeleton: tracing the filamentary structure of the universe , 2007, 0707.3123.

[27]  W. Schaap,et al.  The Cosmic Web: Geometric Analysis , 2007, 0708.1441.

[28]  Stéphane Colombi,et al.  The fully connected N-dimensional skeleton: probing the evolution of the cosmic web , 2008, ArXiv.

[29]  Stéphane Colombi,et al.  The Three-dimensional Skeleton of the SDSS , 2007 .

[30]  R. Weygaert,et al.  THE SPINE OF THE COSMIC WEB , 2008, 0809.5104.

[31]  M. Neyrinck zobov: a parameter-free void-finding algorithm , 2007, 0712.3049.

[32]  G. Tagliaferri,et al.  Accepted for Publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 X-RAY ABSORPTION BY WHIM IN THE SCULPTOR WALL , 2022 .

[33]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[34]  J. E. Forero-Romero,et al.  A Dynamical Classification of the Cosmic Web , 2008, 0809.4135.

[35]  J. Cardoso,et al.  The local theory of the cosmic skeleton , 2008, 0811.1530.

[36]  Rien van de Weygaert,et al.  Alpha Shape Topology of the Cosmic Web , 2010, 2010 International Symposium on Voronoi Diagrams in Science and Engineering.

[37]  Gianpiero Tagliaferri,et al.  CONFIRMATION OF X-RAY ABSORPTION BY WARM-HOT INTERGALACTIC MEDIUM IN THE SCULPTOR WALL , 2010, 1001.3692.

[38]  J. Michael Shull,et al.  BROAD H i ABSORBERS AS METALLICITY-INDEPENDENT TRACERS OF THE WARM-HOT INTERGALACTIC MEDIUM , 2009, 0912.1603.

[39]  On the filamentary environment of galaxies , 2009, 0910.1728.

[40]  J. Einasto,et al.  Groups of galaxies in the SDSS Data Release 7 - Flux- and volume-limited samples , 2010 .

[41]  R. S. Stoica,et al.  Filaments in observed and mock galaxy catalogues , 2009, 0912.2021.

[42]  A. Szalay,et al.  Unfolding the hierarchy of voids , 2010, 1002.1503.

[43]  T. Sousbie,et al.  SUZAKU OBSERVATION OF A NEW MERGING GROUP OF GALAXIES AT A FILAMENTARY JUNCTION , 2011, 1101.0614.