Steep-Slope WSe2 Negative Capacitance Field-Effect Transistor.

P-type two-dimensional steep-slope negative capacitance field-effect transistors are demonstrated for the first time with WSe2 as channel material and ferroelectric hafnium zirconium oxide in gate dielectric stack. F4-TCNQ is used as p-type dopant to suppress electron leakage current and to reduce Schottky barrier width for holes. WSe2 negative capacitance field-effect transistors with and without internal metal gate structures and the internal field-effect transistors are compared and studied. Significant SS reduction is observed in WSe2 negative capacitance field-effect transistors by inserting the ferroelectric hafnium zirconium oxide layer, suggesting the existence of internal amplification (∼10) due to the negative capacitance effect. Subthreshold slope less than 60 mV/dec (as low as 14.4 mV/dec) at room temperature is obtained for both forward and reverse gate voltage sweeps. Negative differential resistance is observed at room temperature on WSe2 negative capacitance field-effect-transistors as the result of negative capacitance induced negative drain-induced-barrier-lowering effect.

[1]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[2]  Zhixian Zhou,et al.  Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors. , 2016, Nano letters.

[3]  P. Zhou,et al.  Negative capacitance 2D MoS2 transistors with sub-60mV/dec subthreshold swing over 6 orders, 250 μA/μm current density, and nearly-hysteresis-free , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[4]  Akira Toriumi,et al.  Fully coupled 3-D device simulation of negative capacitance FinFETs for sub 10 nm integration , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[5]  J. Appenzeller,et al.  Strain Engineering for Transition Metal Dichalcogenides Based Field Effect Transistors. , 2016, ACS nano.

[6]  Suman Datta,et al.  Time-Resolved Measurement of Negative Capacitance , 2018, IEEE Electron Device Letters.

[7]  Zhixian Zhou,et al.  High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. , 2014, Nano letters.

[8]  Joerg Appenzeller,et al.  WSe2 field effect transistors with enhanced ambipolar characteristics , 2013 .

[9]  Yue Peng,et al.  Ferroelectric HfZrOx Ge and GeSn PMOSFETs with Sub-60 mV/decade subthreshold swing, negligible hysteresis, and improved Ids , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[10]  M. H. Lee,et al.  Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[11]  Mengwei Si,et al.  Hysteresis-free negative capacitance germanium CMOS FinFETs with Bi-directional Sub-60 mV/dec , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[12]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[13]  R. Lieth,et al.  Transition Metal Dichalcogenides , 1977 .

[14]  Lothar Frey,et al.  Ferroelectricity in Simple Binary ZrO2 and HfO2. , 2012, Nano letters.

[15]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.

[16]  Daoben Zhu,et al.  Chemical doping of graphene , 2011 .

[17]  L. You,et al.  Negative capacitance in a ferroelectric capacitor. , 2014, Nature materials.

[18]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[19]  Wei Chen,et al.  Surface transfer p-type doping of epitaxial graphene. , 2007, Journal of the American Chemical Society.

[20]  Performance Enhancement of Black Phosphorus Field-Effect Transistors by Chemical Doping , 2016, IEEE Electron Device Letters.

[21]  P. Ye,et al.  Black phosphorus field-effect transistor with record drain current exceeding 1 A/mm , 2017, 2017 75th Annual Device Research Conference (DRC).

[22]  Chenming Hu,et al.  Compact models of negative-capacitance FinFETs: Lumped and distributed charge models , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[23]  Hong Zhou,et al.  Steep-slope hysteresis-free negative capacitance MoS2 transistors , 2017, Nature Nanotechnology.

[24]  Ahmad Zubair,et al.  Subthreshold swing improvement in MoS2 transistors by the negative-capacitance effect in a ferroelectric Al-doped-HfO2/HfO2 gate dielectric stack. , 2017, Nanoscale.

[25]  T. Palacios,et al.  High-Performance WSe 2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits , 2016 .

[26]  R. Sporer,et al.  14nm Ferroelectric FinFET technology with steep subthreshold slope for ultra low power applications , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[27]  Chenming Hu,et al.  Sub-60mV-swing negative-capacitance FinFET without hysteresis , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[28]  S. Wind,et al.  Field-modulated carrier transport in carbon nanotube transistors. , 2002, Physical review letters.

[29]  Sayeef Salahuddin,et al.  Sustained Sub-60 mV/decade Switching via the Negative Capacitance Effect in MoS2 Transistors. , 2017, Nano letters.

[30]  A. Ionescu,et al.  Demonstration of subthrehold swing smaller than 60mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 gate stack , 2008, 2008 IEEE International Electron Devices Meeting.

[31]  C. Su,et al.  Sub-60 mV/dec ferroelectric HZO MoS2 negative capacitance field-effect transistor with internal metal gate: The role of parasitic capacitance , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).